Linear models :: a mean model approach /
Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vect...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego :
Academic Press,
©1996.
|
Schriftenreihe: | Probability and mathematical statistics.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory. Key Features * Provides a versatile format for investigating linear model theory, using the mean model * Uses examples that are familiar to the student: * design of experiments, analysis of variance, regression, and normal distribution theory * Includes a review of relevant linear algebra concepts * Contains fully worked examples which follow the theorem/proof presentation. |
Beschreibung: | 1 online resource (xii, 228 pages) |
Bibliographie: | Includes bibliographical references (pages 221-223) and index. |
ISBN: | 058549214X 9780585492148 9780125084659 012508465X 0080510299 9780080510293 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm54379581 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 040209s1996 cau obs 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d TNF |d OPELS |d IDEBK |d NRU |d E7B |d TULIB |d EBLCP |d OCLCO |d OCLCQ |d OCLCF |d UKDOC |d OCLCQ |d COO |d OCLCQ |d AGLDB |d PIFBR |d OCLCQ |d WY@ |d LUE |d STF |d D6H |d VTS |d NLE |d TOF |d OCLCQ |d UKMGB |d LEAUB |d M8D |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d INARC |d OCLCQ | ||
015 | |a GBB739176 |2 bnb | ||
016 | 7 | |a 017581985 |2 Uk | |
019 | |a 162128660 |a 171131940 |a 648266294 |a 779919969 | ||
020 | |a 058549214X |q (electronic bk.) | ||
020 | |a 9780585492148 |q (electronic bk.) | ||
020 | |a 9780125084659 | ||
020 | |a 012508465X | ||
020 | |a 0080510299 | ||
020 | |a 9780080510293 | ||
035 | |a (OCoLC)54379581 |z (OCoLC)162128660 |z (OCoLC)171131940 |z (OCoLC)648266294 |z (OCoLC)779919969 | ||
037 | |a 77293:77293 |b Elsevier Science & Technology |n http://www.sciencedirect.com | ||
050 | 4 | |a QA279 |b .M685 1996eb | |
072 | 7 | |a MAT |x 029020 |2 bisacsh | |
082 | 7 | |a 519.5/35 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Moser, Barry Kurt. | |
245 | 1 | 0 | |a Linear models : |b a mean model approach / |c Barry Kurt Moser. |
260 | |a San Diego : |b Academic Press, |c ©1996. | ||
300 | |a 1 online resource (xii, 228 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Probability and mathematical statistics | |
504 | |a Includes bibliographical references (pages 221-223) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index. | |
520 | |a Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory. Key Features * Provides a versatile format for investigating linear model theory, using the mean model * Uses examples that are familiar to the student: * design of experiments, analysis of variance, regression, and normal distribution theory * Includes a review of relevant linear algebra concepts * Contains fully worked examples which follow the theorem/proof presentation. | ||
650 | 0 | |a Linear models (Statistics) |0 http://id.loc.gov/authorities/subjects/sh85077177 | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Multivariate Analysis. |2 bisacsh | |
650 | 7 | |a Linear models (Statistics) |2 fast | |
650 | 1 | 7 | |a Lineaire modellen. |2 gtt |
650 | 7 | |a Modèles linéaires (statistique) |2 ram | |
650 | 7 | |a Moyenne. |2 ram | |
650 | 7 | |a Formes quadratiques. |2 ram | |
650 | 7 | |a Analyse de régression |x Moindres carrés. |2 ram | |
650 | 7 | |a Statistique mathématique. |2 ram | |
650 | 7 | |a Estimation, Théorie de l'. |2 ram | |
650 | 7 | |a Programmation (mathématiques) |2 ram | |
653 | 0 | |a Statistical analysis | |
776 | 0 | 8 | |i Print version: |a Moser, Barry Kurt. |t Linear models. |d San Diego : Academic Press, ©1996 |z 012508465X |w (DLC) 96033930 |w (OCoLC)34321626 |
830 | 0 | |a Probability and mathematical statistics. |0 http://id.loc.gov/authorities/names/n42019721 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91180 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780125084659 |3 Volltext |
938 | |a Internet Archive |b INAR |n linearmodelsmean0000mose | ||
938 | |a 123Library |b 123L |n 35697 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL300584 | ||
938 | |a EBSCOhost |b EBSC |n 91180 | ||
938 | |a YBP Library Services |b YANK |n 2336970 | ||
938 | |a YBP Library Services |b YANK |n 2613960 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm54379581 |
---|---|
_version_ | 1816881614015168512 |
adam_text | |
any_adam_object | |
author | Moser, Barry Kurt |
author_facet | Moser, Barry Kurt |
author_role | |
author_sort | Moser, Barry Kurt |
author_variant | b k m bk bkm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279 .M685 1996eb |
callnumber-search | QA279 .M685 1996eb |
callnumber-sort | QA 3279 M685 41996EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index. |
ctrlnum | (OCoLC)54379581 |
dewey-full | 519.5/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/35 |
dewey-search | 519.5/35 |
dewey-sort | 3519.5 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06280cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm54379581 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">040209s1996 cau obs 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNF</subfield><subfield code="d">OPELS</subfield><subfield code="d">IDEBK</subfield><subfield code="d">NRU</subfield><subfield code="d">E7B</subfield><subfield code="d">TULIB</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKDOC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">LUE</subfield><subfield code="d">STF</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">NLE</subfield><subfield code="d">TOF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB739176</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017581985</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">162128660</subfield><subfield code="a">171131940</subfield><subfield code="a">648266294</subfield><subfield code="a">779919969</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">058549214X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585492148</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125084659</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012508465X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080510299</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080510293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54379581</subfield><subfield code="z">(OCoLC)162128660</subfield><subfield code="z">(OCoLC)171131940</subfield><subfield code="z">(OCoLC)648266294</subfield><subfield code="z">(OCoLC)779919969</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">77293:77293</subfield><subfield code="b">Elsevier Science & Technology</subfield><subfield code="n">http://www.sciencedirect.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA279</subfield><subfield code="b">.M685 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.5/35</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moser, Barry Kurt.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear models :</subfield><subfield code="b">a mean model approach /</subfield><subfield code="c">Barry Kurt Moser.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">San Diego :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">©1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 228 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Probability and mathematical statistics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 221-223) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory. Key Features * Provides a versatile format for investigating linear model theory, using the mean model * Uses examples that are familiar to the student: * design of experiments, analysis of variance, regression, and normal distribution theory * Includes a review of relevant linear algebra concepts * Contains fully worked examples which follow the theorem/proof presentation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Linear models (Statistics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85077177</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Multivariate Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear models (Statistics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lineaire modellen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèles linéaires (statistique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moyenne.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes quadratiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse de régression</subfield><subfield code="x">Moindres carrés.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistique mathématique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estimation, Théorie de l'.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmation (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="653" ind1="0" ind2=" "><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Moser, Barry Kurt.</subfield><subfield code="t">Linear models.</subfield><subfield code="d">San Diego : Academic Press, ©1996</subfield><subfield code="z">012508465X</subfield><subfield code="w">(DLC) 96033930</subfield><subfield code="w">(OCoLC)34321626</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Probability and mathematical statistics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42019721</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91180</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780125084659</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">linearmodelsmean0000mose</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">123Library</subfield><subfield code="b">123L</subfield><subfield code="n">35697</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL300584</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">91180</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2336970</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2613960</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm54379581 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:15:31Z |
institution | BVB |
isbn | 058549214X 9780585492148 9780125084659 012508465X 0080510299 9780080510293 |
language | English |
oclc_num | 54379581 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 228 pages) |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Academic Press, |
record_format | marc |
series | Probability and mathematical statistics. |
series2 | Probability and mathematical statistics |
spelling | Moser, Barry Kurt. Linear models : a mean model approach / Barry Kurt Moser. San Diego : Academic Press, ©1996. 1 online resource (xii, 228 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Probability and mathematical statistics Includes bibliographical references (pages 221-223) and index. Print version record. Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index. Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory. Key Features * Provides a versatile format for investigating linear model theory, using the mean model * Uses examples that are familiar to the student: * design of experiments, analysis of variance, regression, and normal distribution theory * Includes a review of relevant linear algebra concepts * Contains fully worked examples which follow the theorem/proof presentation. Linear models (Statistics) http://id.loc.gov/authorities/subjects/sh85077177 MATHEMATICS Probability & Statistics Multivariate Analysis. bisacsh Linear models (Statistics) fast Lineaire modellen. gtt Modèles linéaires (statistique) ram Moyenne. ram Formes quadratiques. ram Analyse de régression Moindres carrés. ram Statistique mathématique. ram Estimation, Théorie de l'. ram Programmation (mathématiques) ram Statistical analysis Print version: Moser, Barry Kurt. Linear models. San Diego : Academic Press, ©1996 012508465X (DLC) 96033930 (OCoLC)34321626 Probability and mathematical statistics. http://id.loc.gov/authorities/names/n42019721 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91180 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780125084659 Volltext |
spellingShingle | Moser, Barry Kurt Linear models : a mean model approach / Probability and mathematical statistics. Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index. Linear models (Statistics) http://id.loc.gov/authorities/subjects/sh85077177 MATHEMATICS Probability & Statistics Multivariate Analysis. bisacsh Linear models (Statistics) fast Lineaire modellen. gtt Modèles linéaires (statistique) ram Moyenne. ram Formes quadratiques. ram Analyse de régression Moindres carrés. ram Statistique mathématique. ram Estimation, Théorie de l'. ram Programmation (mathématiques) ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85077177 |
title | Linear models : a mean model approach / |
title_auth | Linear models : a mean model approach / |
title_exact_search | Linear models : a mean model approach / |
title_full | Linear models : a mean model approach / Barry Kurt Moser. |
title_fullStr | Linear models : a mean model approach / Barry Kurt Moser. |
title_full_unstemmed | Linear models : a mean model approach / Barry Kurt Moser. |
title_short | Linear models : |
title_sort | linear models a mean model approach |
title_sub | a mean model approach / |
topic | Linear models (Statistics) http://id.loc.gov/authorities/subjects/sh85077177 MATHEMATICS Probability & Statistics Multivariate Analysis. bisacsh Linear models (Statistics) fast Lineaire modellen. gtt Modèles linéaires (statistique) ram Moyenne. ram Formes quadratiques. ram Analyse de régression Moindres carrés. ram Statistique mathématique. ram Estimation, Théorie de l'. ram Programmation (mathématiques) ram |
topic_facet | Linear models (Statistics) MATHEMATICS Probability & Statistics Multivariate Analysis. Lineaire modellen. Modèles linéaires (statistique) Moyenne. Formes quadratiques. Analyse de régression Moindres carrés. Statistique mathématique. Estimation, Théorie de l'. Programmation (mathématiques) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91180 https://www.sciencedirect.com/science/book/9780125084659 |
work_keys_str_mv | AT moserbarrykurt linearmodelsameanmodelapproach |