Nanoscience :: friction and rheology on the nanometer scale /
Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction co...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; New Jersey :
World Scientific,
©1998.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated. |
Beschreibung: | 1 online resource (xvii, 373 pages :) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812385339 9789812385338 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm52860547 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030818s1998 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d B24X7 |d OCLCQ |d E7B |d OCLCF |d OCLCO |d OCLCQ |d NLGGC |d OCLCQ |d VTS |d AGLDB |d COO |d STF |d AU@ |d M8D |d OCLCQ |d K6U |d LEAUB |d OCLCO |d OCL |d OCLCQ |d INARC |d OCLCO |d SXB |d OCLCQ | ||
019 | |a 1086553476 |a 1392378400 | ||
020 | |a 9812385339 |q (electronic bk.) | ||
020 | |a 9789812385338 |q (electronic bk.) | ||
020 | |z 9789810225629 | ||
020 | |z 9810225628 | ||
035 | |a (OCoLC)52860547 |z (OCoLC)1086553476 |z (OCoLC)1392378400 | ||
050 | 4 | |a QC197 |b .N36 1998eb | |
072 | 7 | |a SCI |x 018000 |2 bisacsh | |
082 | 7 | |a 531/.1134 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Nanoscience : |b friction and rheology on the nanometer scale / |c E. Meyer [and others]. |
246 | 1 | 8 | |a Nanoscience, friction and rheology on the nanometer scale |
260 | |a Singapore ; |a New Jersey : |b World Scientific, |c ©1998. | ||
300 | |a 1 online resource (xvii, 373 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated. | ||
505 | 0 | |a 1. Introduction and motivation. 1.1. Introduction. 1.2. Short outline of the history of tribology. 1.3. Leonardo da Vinci (1452-1519). 1.4. Guillaume Amontons (1663-1705). 1.5. Leonhard Euler (1707-1783). 1.6. Charles Augustin Coulomb (1736-1806). 1.7. Friction and wear. 1.8. Friction on a macroscopic scale. 1.9. The Bowden and Tabor adhesion model. 1.10. The shear strength. 1.11. The real area of contact -- 2. Instruments. 2.1. Introduction to instruments. 2.2. Tribometer experiments. 2.3. Extensions of tribometers. 2.4. Surface force apparatus. 2.5. Resonant stick-slip motion in colloidal crystals. 2.6. Quartz crystal microbalance. 2.7. Friction force microscopy. 2.8. Extensions of friction force microscopy: Nanosled experiments -- 3. Normal forces at the atomic scale. 3.1. Important forces between atoms and molecules. 3.2. Important forces between probing tip and sample. 3.3. Microscopic description of the tip-sample contact. 3.4. True atomic resolution with normal forces -- 4. Understanding of lateral forces. 4.1. Geometrical effects: the role of topography. 4.2. Step edges and Schwoebel barriers. 4.3 Atomic-scale friction: Tomlinsons mechanism. 4.4. A modern analysis of Tomlinsons mechanism. 4.5. Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism. 4.6. Friction between atomically flat surfaces. 4.7. Molecular dynamics simulations: quantitative results -- 5. Dissipation mechanisms. 5.1. Introduction. 5.2. Friction behaviour in the limit [symbol]. 5.3. Phononic friction. 5.4. Electronic friction. 5.5. Van der Waals friction. 5.6. Comparison -- 6. Nanorheology and nanoconfinement. 6.1. Introduction. 6.2. Continuum mechanics. 6.3. Nanorheological and shear behavior of confined liquids. 6.4. Nanorheological and shear behavior of complex liquids. 6.5. Nanorheological and mechanical properties of polymeric surfaces and thin films measured by SFM -- 7. Generation of ultrasonic waves insliding friction. 7.1. Abstract. 7.2. Introduction. 7.3. The stick-slip process between flat surfaces with adsorbedsoft molecules. 7.4. Stick-slip processes between ideally flat surfaces without adsorbed soft molecules. 7.5 Excitations of transverse acoustic vibrations in thin films by stick-slip processes. 7.6. Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations. 7.7. Previous experimental studies of acoustic emission. 7.8. Proposed experiments for the detection of high frequency ultrasonic waves generated by friction. 7.9. On the possible reduction of friction by ultrasonic waves. 7.10. Conclusions. 7.11. Acknowledgements. 7.12. References -- 8. Friction force microscopy experiments. 8.1. Material-specific contrast of friction force microscopy. 8.2. Anisotropy of friction. 8.3. Role of environment. 8.4. Chemical nature of probing tip. 8.5. Traditional and new concepts to understand the material-specific contrasts of FFM. | |
650 | 0 | |a Friction. |0 http://id.loc.gov/authorities/subjects/sh85051971 | |
650 | 0 | |a Nanostructured materials. |0 http://id.loc.gov/authorities/subjects/sh93000864 | |
650 | 0 | |a Surfaces (Physics) |0 http://id.loc.gov/authorities/subjects/sh85130749 | |
650 | 0 | |a Rheology. |0 http://id.loc.gov/authorities/subjects/sh85113619 | |
650 | 0 | |a Polymers. |0 http://id.loc.gov/authorities/subjects/sh85104660 | |
650 | 0 | |a Ultrasonic waves. |0 http://id.loc.gov/authorities/subjects/sh85139488 | |
650 | 0 | |a Ultrasonics. |0 http://id.loc.gov/authorities/subjects/sh85139494 | |
650 | 6 | |a Nanomatériaux. | |
650 | 6 | |a Surfaces (Physique) | |
650 | 6 | |a Rhéologie. | |
650 | 6 | |a Polymères. | |
650 | 6 | |a Ultrasons. | |
650 | 7 | |a polymers. |2 aat | |
650 | 7 | |a ultrasound. |2 aat | |
650 | 7 | |a SCIENCE |x Mechanics |x Dynamics. |2 bisacsh | |
650 | 7 | |a Ultrasonics |2 fast | |
650 | 7 | |a Friction |2 fast | |
650 | 7 | |a Nanostructured materials |2 fast | |
650 | 7 | |a Polymers |2 fast | |
650 | 7 | |a Rheology |2 fast | |
650 | 7 | |a Surfaces (Physics) |2 fast | |
650 | 7 | |a Ultrasonic waves |2 fast | |
650 | 1 | 7 | |a Wrijving. |2 gtt |
650 | 1 | 7 | |a Tribologie. |2 gtt |
650 | 1 | 7 | |a Nanostructuren. |2 gtt |
700 | 1 | |a Meyer, E. | |
776 | 0 | 8 | |i Print version: |t Nanoscience. |d Singapore ; New Jersey : World Scientific, ©1998 |z 9810225628 |w (OCoLC)40944474 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91484 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91484 |3 Volltext |
938 | |a Books 24x7 |b B247 |n bke00000916 | ||
938 | |a EBSCOhost |b EBSC |n 91484 | ||
938 | |a YBP Library Services |b YANK |n 2407609 | ||
938 | |a Internet Archive |b INAR |n nanosciencefrict0000unse | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm52860547 |
---|---|
_version_ | 1826941547331977216 |
adam_text | |
any_adam_object | |
author2 | Meyer, E. |
author2_role | |
author2_variant | e m em |
author_facet | Meyer, E. |
author_sort | Meyer, E. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC197 |
callnumber-raw | QC197 .N36 1998eb |
callnumber-search | QC197 .N36 1998eb |
callnumber-sort | QC 3197 N36 41998EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Introduction and motivation. 1.1. Introduction. 1.2. Short outline of the history of tribology. 1.3. Leonardo da Vinci (1452-1519). 1.4. Guillaume Amontons (1663-1705). 1.5. Leonhard Euler (1707-1783). 1.6. Charles Augustin Coulomb (1736-1806). 1.7. Friction and wear. 1.8. Friction on a macroscopic scale. 1.9. The Bowden and Tabor adhesion model. 1.10. The shear strength. 1.11. The real area of contact -- 2. Instruments. 2.1. Introduction to instruments. 2.2. Tribometer experiments. 2.3. Extensions of tribometers. 2.4. Surface force apparatus. 2.5. Resonant stick-slip motion in colloidal crystals. 2.6. Quartz crystal microbalance. 2.7. Friction force microscopy. 2.8. Extensions of friction force microscopy: Nanosled experiments -- 3. Normal forces at the atomic scale. 3.1. Important forces between atoms and molecules. 3.2. Important forces between probing tip and sample. 3.3. Microscopic description of the tip-sample contact. 3.4. True atomic resolution with normal forces -- 4. Understanding of lateral forces. 4.1. Geometrical effects: the role of topography. 4.2. Step edges and Schwoebel barriers. 4.3 Atomic-scale friction: Tomlinsons mechanism. 4.4. A modern analysis of Tomlinsons mechanism. 4.5. Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism. 4.6. Friction between atomically flat surfaces. 4.7. Molecular dynamics simulations: quantitative results -- 5. Dissipation mechanisms. 5.1. Introduction. 5.2. Friction behaviour in the limit [symbol]. 5.3. Phononic friction. 5.4. Electronic friction. 5.5. Van der Waals friction. 5.6. Comparison -- 6. Nanorheology and nanoconfinement. 6.1. Introduction. 6.2. Continuum mechanics. 6.3. Nanorheological and shear behavior of confined liquids. 6.4. Nanorheological and shear behavior of complex liquids. 6.5. Nanorheological and mechanical properties of polymeric surfaces and thin films measured by SFM -- 7. Generation of ultrasonic waves insliding friction. 7.1. Abstract. 7.2. Introduction. 7.3. The stick-slip process between flat surfaces with adsorbedsoft molecules. 7.4. Stick-slip processes between ideally flat surfaces without adsorbed soft molecules. 7.5 Excitations of transverse acoustic vibrations in thin films by stick-slip processes. 7.6. Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations. 7.7. Previous experimental studies of acoustic emission. 7.8. Proposed experiments for the detection of high frequency ultrasonic waves generated by friction. 7.9. On the possible reduction of friction by ultrasonic waves. 7.10. Conclusions. 7.11. Acknowledgements. 7.12. References -- 8. Friction force microscopy experiments. 8.1. Material-specific contrast of friction force microscopy. 8.2. Anisotropy of friction. 8.3. Role of environment. 8.4. Chemical nature of probing tip. 8.5. Traditional and new concepts to understand the material-specific contrasts of FFM. |
ctrlnum | (OCoLC)52860547 |
dewey-full | 531/.1134 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.1134 |
dewey-search | 531/.1134 |
dewey-sort | 3531 41134 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06411cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm52860547 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030818s1998 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">B24X7</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1086553476</subfield><subfield code="a">1392378400</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812385339</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812385338</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810225629</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810225628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52860547</subfield><subfield code="z">(OCoLC)1086553476</subfield><subfield code="z">(OCoLC)1392378400</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC197</subfield><subfield code="b">.N36 1998eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531/.1134</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Nanoscience :</subfield><subfield code="b">friction and rheology on the nanometer scale /</subfield><subfield code="c">E. Meyer [and others].</subfield></datafield><datafield tag="246" ind1="1" ind2="8"><subfield code="a">Nanoscience, friction and rheology on the nanometer scale</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©1998.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 373 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction and motivation. 1.1. Introduction. 1.2. Short outline of the history of tribology. 1.3. Leonardo da Vinci (1452-1519). 1.4. Guillaume Amontons (1663-1705). 1.5. Leonhard Euler (1707-1783). 1.6. Charles Augustin Coulomb (1736-1806). 1.7. Friction and wear. 1.8. Friction on a macroscopic scale. 1.9. The Bowden and Tabor adhesion model. 1.10. The shear strength. 1.11. The real area of contact -- 2. Instruments. 2.1. Introduction to instruments. 2.2. Tribometer experiments. 2.3. Extensions of tribometers. 2.4. Surface force apparatus. 2.5. Resonant stick-slip motion in colloidal crystals. 2.6. Quartz crystal microbalance. 2.7. Friction force microscopy. 2.8. Extensions of friction force microscopy: Nanosled experiments -- 3. Normal forces at the atomic scale. 3.1. Important forces between atoms and molecules. 3.2. Important forces between probing tip and sample. 3.3. Microscopic description of the tip-sample contact. 3.4. True atomic resolution with normal forces -- 4. Understanding of lateral forces. 4.1. Geometrical effects: the role of topography. 4.2. Step edges and Schwoebel barriers. 4.3 Atomic-scale friction: Tomlinsons mechanism. 4.4. A modern analysis of Tomlinsons mechanism. 4.5. Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism. 4.6. Friction between atomically flat surfaces. 4.7. Molecular dynamics simulations: quantitative results -- 5. Dissipation mechanisms. 5.1. Introduction. 5.2. Friction behaviour in the limit [symbol]. 5.3. Phononic friction. 5.4. Electronic friction. 5.5. Van der Waals friction. 5.6. Comparison -- 6. Nanorheology and nanoconfinement. 6.1. Introduction. 6.2. Continuum mechanics. 6.3. Nanorheological and shear behavior of confined liquids. 6.4. Nanorheological and shear behavior of complex liquids. 6.5. Nanorheological and mechanical properties of polymeric surfaces and thin films measured by SFM -- 7. Generation of ultrasonic waves insliding friction. 7.1. Abstract. 7.2. Introduction. 7.3. The stick-slip process between flat surfaces with adsorbedsoft molecules. 7.4. Stick-slip processes between ideally flat surfaces without adsorbed soft molecules. 7.5 Excitations of transverse acoustic vibrations in thin films by stick-slip processes. 7.6. Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations. 7.7. Previous experimental studies of acoustic emission. 7.8. Proposed experiments for the detection of high frequency ultrasonic waves generated by friction. 7.9. On the possible reduction of friction by ultrasonic waves. 7.10. Conclusions. 7.11. Acknowledgements. 7.12. References -- 8. Friction force microscopy experiments. 8.1. Material-specific contrast of friction force microscopy. 8.2. Anisotropy of friction. 8.3. Role of environment. 8.4. Chemical nature of probing tip. 8.5. Traditional and new concepts to understand the material-specific contrasts of FFM.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Friction.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051971</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructured materials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93000864</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Surfaces (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85130749</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Rheology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85113619</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polymers.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104660</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ultrasonic waves.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85139488</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ultrasonics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85139494</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanomatériaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Surfaces (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Rhéologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polymères.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ultrasons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">polymers.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ultrasound.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Dynamics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ultrasonics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Friction</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructured materials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rheology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surfaces (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ultrasonic waves</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Wrijving.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Tribologie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Nanostructuren.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, E.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Nanoscience.</subfield><subfield code="d">Singapore ; New Jersey : World Scientific, ©1998</subfield><subfield code="z">9810225628</subfield><subfield code="w">(OCoLC)40944474</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91484</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91484</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Books 24x7</subfield><subfield code="b">B247</subfield><subfield code="n">bke00000916</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">91484</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407609</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">nanosciencefrict0000unse</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm52860547 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:13:51Z |
institution | BVB |
isbn | 9812385339 9789812385338 |
language | English |
oclc_num | 52860547 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 373 pages :) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | World Scientific, |
record_format | marc |
spelling | Nanoscience : friction and rheology on the nanometer scale / E. Meyer [and others]. Nanoscience, friction and rheology on the nanometer scale Singapore ; New Jersey : World Scientific, ©1998. 1 online resource (xvii, 373 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated. 1. Introduction and motivation. 1.1. Introduction. 1.2. Short outline of the history of tribology. 1.3. Leonardo da Vinci (1452-1519). 1.4. Guillaume Amontons (1663-1705). 1.5. Leonhard Euler (1707-1783). 1.6. Charles Augustin Coulomb (1736-1806). 1.7. Friction and wear. 1.8. Friction on a macroscopic scale. 1.9. The Bowden and Tabor adhesion model. 1.10. The shear strength. 1.11. The real area of contact -- 2. Instruments. 2.1. Introduction to instruments. 2.2. Tribometer experiments. 2.3. Extensions of tribometers. 2.4. Surface force apparatus. 2.5. Resonant stick-slip motion in colloidal crystals. 2.6. Quartz crystal microbalance. 2.7. Friction force microscopy. 2.8. Extensions of friction force microscopy: Nanosled experiments -- 3. Normal forces at the atomic scale. 3.1. Important forces between atoms and molecules. 3.2. Important forces between probing tip and sample. 3.3. Microscopic description of the tip-sample contact. 3.4. True atomic resolution with normal forces -- 4. Understanding of lateral forces. 4.1. Geometrical effects: the role of topography. 4.2. Step edges and Schwoebel barriers. 4.3 Atomic-scale friction: Tomlinsons mechanism. 4.4. A modern analysis of Tomlinsons mechanism. 4.5. Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism. 4.6. Friction between atomically flat surfaces. 4.7. Molecular dynamics simulations: quantitative results -- 5. Dissipation mechanisms. 5.1. Introduction. 5.2. Friction behaviour in the limit [symbol]. 5.3. Phononic friction. 5.4. Electronic friction. 5.5. Van der Waals friction. 5.6. Comparison -- 6. Nanorheology and nanoconfinement. 6.1. Introduction. 6.2. Continuum mechanics. 6.3. Nanorheological and shear behavior of confined liquids. 6.4. Nanorheological and shear behavior of complex liquids. 6.5. Nanorheological and mechanical properties of polymeric surfaces and thin films measured by SFM -- 7. Generation of ultrasonic waves insliding friction. 7.1. Abstract. 7.2. Introduction. 7.3. The stick-slip process between flat surfaces with adsorbedsoft molecules. 7.4. Stick-slip processes between ideally flat surfaces without adsorbed soft molecules. 7.5 Excitations of transverse acoustic vibrations in thin films by stick-slip processes. 7.6. Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations. 7.7. Previous experimental studies of acoustic emission. 7.8. Proposed experiments for the detection of high frequency ultrasonic waves generated by friction. 7.9. On the possible reduction of friction by ultrasonic waves. 7.10. Conclusions. 7.11. Acknowledgements. 7.12. References -- 8. Friction force microscopy experiments. 8.1. Material-specific contrast of friction force microscopy. 8.2. Anisotropy of friction. 8.3. Role of environment. 8.4. Chemical nature of probing tip. 8.5. Traditional and new concepts to understand the material-specific contrasts of FFM. Friction. http://id.loc.gov/authorities/subjects/sh85051971 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Surfaces (Physics) http://id.loc.gov/authorities/subjects/sh85130749 Rheology. http://id.loc.gov/authorities/subjects/sh85113619 Polymers. http://id.loc.gov/authorities/subjects/sh85104660 Ultrasonic waves. http://id.loc.gov/authorities/subjects/sh85139488 Ultrasonics. http://id.loc.gov/authorities/subjects/sh85139494 Nanomatériaux. Surfaces (Physique) Rhéologie. Polymères. Ultrasons. polymers. aat ultrasound. aat SCIENCE Mechanics Dynamics. bisacsh Ultrasonics fast Friction fast Nanostructured materials fast Polymers fast Rheology fast Surfaces (Physics) fast Ultrasonic waves fast Wrijving. gtt Tribologie. gtt Nanostructuren. gtt Meyer, E. Print version: Nanoscience. Singapore ; New Jersey : World Scientific, ©1998 9810225628 (OCoLC)40944474 |
spellingShingle | Nanoscience : friction and rheology on the nanometer scale / 1. Introduction and motivation. 1.1. Introduction. 1.2. Short outline of the history of tribology. 1.3. Leonardo da Vinci (1452-1519). 1.4. Guillaume Amontons (1663-1705). 1.5. Leonhard Euler (1707-1783). 1.6. Charles Augustin Coulomb (1736-1806). 1.7. Friction and wear. 1.8. Friction on a macroscopic scale. 1.9. The Bowden and Tabor adhesion model. 1.10. The shear strength. 1.11. The real area of contact -- 2. Instruments. 2.1. Introduction to instruments. 2.2. Tribometer experiments. 2.3. Extensions of tribometers. 2.4. Surface force apparatus. 2.5. Resonant stick-slip motion in colloidal crystals. 2.6. Quartz crystal microbalance. 2.7. Friction force microscopy. 2.8. Extensions of friction force microscopy: Nanosled experiments -- 3. Normal forces at the atomic scale. 3.1. Important forces between atoms and molecules. 3.2. Important forces between probing tip and sample. 3.3. Microscopic description of the tip-sample contact. 3.4. True atomic resolution with normal forces -- 4. Understanding of lateral forces. 4.1. Geometrical effects: the role of topography. 4.2. Step edges and Schwoebel barriers. 4.3 Atomic-scale friction: Tomlinsons mechanism. 4.4. A modern analysis of Tomlinsons mechanism. 4.5. Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism. 4.6. Friction between atomically flat surfaces. 4.7. Molecular dynamics simulations: quantitative results -- 5. Dissipation mechanisms. 5.1. Introduction. 5.2. Friction behaviour in the limit [symbol]. 5.3. Phononic friction. 5.4. Electronic friction. 5.5. Van der Waals friction. 5.6. Comparison -- 6. Nanorheology and nanoconfinement. 6.1. Introduction. 6.2. Continuum mechanics. 6.3. Nanorheological and shear behavior of confined liquids. 6.4. Nanorheological and shear behavior of complex liquids. 6.5. Nanorheological and mechanical properties of polymeric surfaces and thin films measured by SFM -- 7. Generation of ultrasonic waves insliding friction. 7.1. Abstract. 7.2. Introduction. 7.3. The stick-slip process between flat surfaces with adsorbedsoft molecules. 7.4. Stick-slip processes between ideally flat surfaces without adsorbed soft molecules. 7.5 Excitations of transverse acoustic vibrations in thin films by stick-slip processes. 7.6. Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations. 7.7. Previous experimental studies of acoustic emission. 7.8. Proposed experiments for the detection of high frequency ultrasonic waves generated by friction. 7.9. On the possible reduction of friction by ultrasonic waves. 7.10. Conclusions. 7.11. Acknowledgements. 7.12. References -- 8. Friction force microscopy experiments. 8.1. Material-specific contrast of friction force microscopy. 8.2. Anisotropy of friction. 8.3. Role of environment. 8.4. Chemical nature of probing tip. 8.5. Traditional and new concepts to understand the material-specific contrasts of FFM. Friction. http://id.loc.gov/authorities/subjects/sh85051971 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Surfaces (Physics) http://id.loc.gov/authorities/subjects/sh85130749 Rheology. http://id.loc.gov/authorities/subjects/sh85113619 Polymers. http://id.loc.gov/authorities/subjects/sh85104660 Ultrasonic waves. http://id.loc.gov/authorities/subjects/sh85139488 Ultrasonics. http://id.loc.gov/authorities/subjects/sh85139494 Nanomatériaux. Surfaces (Physique) Rhéologie. Polymères. Ultrasons. polymers. aat ultrasound. aat SCIENCE Mechanics Dynamics. bisacsh Ultrasonics fast Friction fast Nanostructured materials fast Polymers fast Rheology fast Surfaces (Physics) fast Ultrasonic waves fast Wrijving. gtt Tribologie. gtt Nanostructuren. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051971 http://id.loc.gov/authorities/subjects/sh93000864 http://id.loc.gov/authorities/subjects/sh85130749 http://id.loc.gov/authorities/subjects/sh85113619 http://id.loc.gov/authorities/subjects/sh85104660 http://id.loc.gov/authorities/subjects/sh85139488 http://id.loc.gov/authorities/subjects/sh85139494 |
title | Nanoscience : friction and rheology on the nanometer scale / |
title_alt | Nanoscience, friction and rheology on the nanometer scale |
title_auth | Nanoscience : friction and rheology on the nanometer scale / |
title_exact_search | Nanoscience : friction and rheology on the nanometer scale / |
title_full | Nanoscience : friction and rheology on the nanometer scale / E. Meyer [and others]. |
title_fullStr | Nanoscience : friction and rheology on the nanometer scale / E. Meyer [and others]. |
title_full_unstemmed | Nanoscience : friction and rheology on the nanometer scale / E. Meyer [and others]. |
title_short | Nanoscience : |
title_sort | nanoscience friction and rheology on the nanometer scale |
title_sub | friction and rheology on the nanometer scale / |
topic | Friction. http://id.loc.gov/authorities/subjects/sh85051971 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Surfaces (Physics) http://id.loc.gov/authorities/subjects/sh85130749 Rheology. http://id.loc.gov/authorities/subjects/sh85113619 Polymers. http://id.loc.gov/authorities/subjects/sh85104660 Ultrasonic waves. http://id.loc.gov/authorities/subjects/sh85139488 Ultrasonics. http://id.loc.gov/authorities/subjects/sh85139494 Nanomatériaux. Surfaces (Physique) Rhéologie. Polymères. Ultrasons. polymers. aat ultrasound. aat SCIENCE Mechanics Dynamics. bisacsh Ultrasonics fast Friction fast Nanostructured materials fast Polymers fast Rheology fast Surfaces (Physics) fast Ultrasonic waves fast Wrijving. gtt Tribologie. gtt Nanostructuren. gtt |
topic_facet | Friction. Nanostructured materials. Surfaces (Physics) Rheology. Polymers. Ultrasonic waves. Ultrasonics. Nanomatériaux. Surfaces (Physique) Rhéologie. Polymères. Ultrasons. polymers. ultrasound. SCIENCE Mechanics Dynamics. Ultrasonics Friction Nanostructured materials Polymers Rheology Ultrasonic waves Wrijving. Tribologie. Nanostructuren. |
work_keys_str_mv | AT meyere nanosciencefrictionandrheologyonthenanometerscale |