Bayesian field theory /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Baltimore, Md. :
Johns Hopkins University Press,
2003.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xix, 411 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 365-402) and index. |
ISBN: | 0801877970 9780801877971 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm52762436 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030731s2003 mdua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d TUU |d OCLCQ |d TNF |d OCLCQ |d ZCU |d OCLCO |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d E7B |d P@U |d COO |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d PIFBR |d MERUC |d OCLCQ |d WY@ |d LUE |d VTS |d TOF |d AU@ |d OCLCQ |d K6U |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 847594358 |a 965353906 |a 992053615 | ||
020 | |a 0801877970 |q (electronic bk.) | ||
020 | |a 9780801877971 |q (electronic bk.) | ||
020 | |z 0801872200 |q (alk. paper) | ||
020 | |z 9780801872204 | ||
035 | |a (OCoLC)52762436 |z (OCoLC)847594358 |z (OCoLC)965353906 |z (OCoLC)992053615 | ||
050 | 4 | |a QC174.85.B38 |b L45 2003eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
082 | 7 | |a 530.15/95 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lemm, Jörg C. | |
245 | 1 | 0 | |a Bayesian field theory / |c Jörg C. Lemm. |
260 | |a Baltimore, Md. : |b Johns Hopkins University Press, |c 2003. | ||
300 | |a 1 online resource (xix, 411 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 365-402) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk. | |
505 | 8 | |a 2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)]. | |
505 | 8 | |a 3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity. | |
505 | 8 | |a 3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees. | |
505 | 8 | |a 4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection. | |
650 | 0 | |a Bayesian field theory. |0 http://id.loc.gov/authorities/subjects/sh2002004440 | |
650 | 6 | |a Théorie des champs bayésienne. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Bayesian field theory |2 fast | |
758 | |i has work: |a Bayesian field theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCXYXG3K6kFYC3mkBfHMmGw |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lemm, Jörg C. |t Bayesian field theory. |d Baltimore, Md. : Johns Hopkins University Press, 2003 |z 0801872200 |w (DLC) 2002073958 |w (OCoLC)50184931 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=79367 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH14709956 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3318656 | ||
938 | |a EBSCOhost |b EBSC |n 79367 | ||
938 | |a Project MUSE |b MUSE |n muse20140 | ||
938 | |a YBP Library Services |b YANK |n 2341125 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm52762436 |
---|---|
_version_ | 1816881609498951680 |
adam_text | |
any_adam_object | |
author | Lemm, Jörg C. |
author_facet | Lemm, Jörg C. |
author_role | |
author_sort | Lemm, Jörg C. |
author_variant | j c l jc jcl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.85.B38 L45 2003eb |
callnumber-search | QC174.85.B38 L45 2003eb |
callnumber-sort | QC 3174.85 B38 L45 42003EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk. 2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)]. 3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity. 3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees. 4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection. |
ctrlnum | (OCoLC)52762436 |
dewey-full | 530.15/95 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/95 |
dewey-search | 530.15/95 |
dewey-sort | 3530.15 295 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05373cam a2200553 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm52762436 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030731s2003 mdua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">P@U</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">PIFBR</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">LUE</subfield><subfield code="d">VTS</subfield><subfield code="d">TOF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">847594358</subfield><subfield code="a">965353906</subfield><subfield code="a">992053615</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0801877970</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780801877971</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0801872200</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780801872204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52762436</subfield><subfield code="z">(OCoLC)847594358</subfield><subfield code="z">(OCoLC)965353906</subfield><subfield code="z">(OCoLC)992053615</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.85.B38</subfield><subfield code="b">L45 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.15/95</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lemm, Jörg C.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian field theory /</subfield><subfield code="c">Jörg C. Lemm.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Baltimore, Md. :</subfield><subfield code="b">Johns Hopkins University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 411 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 365-402) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)].</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian field theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004440</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des champs bayésienne.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Bayesian field theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCXYXG3K6kFYC3mkBfHMmGw</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lemm, Jörg C.</subfield><subfield code="t">Bayesian field theory.</subfield><subfield code="d">Baltimore, Md. : Johns Hopkins University Press, 2003</subfield><subfield code="z">0801872200</subfield><subfield code="w">(DLC) 2002073958</subfield><subfield code="w">(OCoLC)50184931</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=79367</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH14709956</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3318656</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">79367</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Project MUSE</subfield><subfield code="b">MUSE</subfield><subfield code="n">muse20140</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2341125</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm52762436 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:26Z |
institution | BVB |
isbn | 0801877970 9780801877971 |
language | English |
oclc_num | 52762436 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 411 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Johns Hopkins University Press, |
record_format | marc |
spelling | Lemm, Jörg C. Bayesian field theory / Jörg C. Lemm. Baltimore, Md. : Johns Hopkins University Press, 2003. 1 online resource (xix, 411 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 365-402) and index. Print version record. Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk. 2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)]. 3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity. 3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees. 4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection. Bayesian field theory. http://id.loc.gov/authorities/subjects/sh2002004440 Théorie des champs bayésienne. SCIENCE Physics Mathematical & Computational. bisacsh Bayesian field theory fast has work: Bayesian field theory (Text) https://id.oclc.org/worldcat/entity/E39PCXYXG3K6kFYC3mkBfHMmGw https://id.oclc.org/worldcat/ontology/hasWork Print version: Lemm, Jörg C. Bayesian field theory. Baltimore, Md. : Johns Hopkins University Press, 2003 0801872200 (DLC) 2002073958 (OCoLC)50184931 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=79367 Volltext |
spellingShingle | Lemm, Jörg C. Bayesian field theory / Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk. 2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)]. 3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity. 3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees. 4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection. Bayesian field theory. http://id.loc.gov/authorities/subjects/sh2002004440 Théorie des champs bayésienne. SCIENCE Physics Mathematical & Computational. bisacsh Bayesian field theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004440 |
title | Bayesian field theory / |
title_auth | Bayesian field theory / |
title_exact_search | Bayesian field theory / |
title_full | Bayesian field theory / Jörg C. Lemm. |
title_fullStr | Bayesian field theory / Jörg C. Lemm. |
title_full_unstemmed | Bayesian field theory / Jörg C. Lemm. |
title_short | Bayesian field theory / |
title_sort | bayesian field theory |
topic | Bayesian field theory. http://id.loc.gov/authorities/subjects/sh2002004440 Théorie des champs bayésienne. SCIENCE Physics Mathematical & Computational. bisacsh Bayesian field theory fast |
topic_facet | Bayesian field theory. Théorie des champs bayésienne. SCIENCE Physics Mathematical & Computational. Bayesian field theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=79367 |
work_keys_str_mv | AT lemmjorgc bayesianfieldtheory |