Classical covariant fields /:
"This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K. ; New York :
Cambridge University Press,
2002.
|
Schriftenreihe: | Cambridge monographs on mathematical physics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature. Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket |
Beschreibung: | 1 online resource (xx, 529 pages) : illustrations. |
Bibliographie: | Includes bibliographical references (pages 515-519) and index. |
ISBN: | 0511019424 9780511019425 9780511535055 0511535058 9780511045516 0511045514 9780511030215 0511030215 0511157061 9780511157066 1107125766 9781107125766 0511176287 9780511176289 9786610434060 6610434069 1280434066 9781280434068 0511329512 9780511329517 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm52568841 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030708s2002 enka ob 001 0 eng d | ||
010 | |a 2001043686 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCG |d OCLCQ |d REDDC |d BAKER |d CO3 |d AU@ |d OCLCQ |d IDEBK |d OCLCQ |d TNF |d OCLCQ |d MERUC |d CCO |d E7B |d DKDLA |d OCLCO |d OCLCQ |d CAMBR |d OL$ |d OCLCQ |d NLGGC |d DEBSZ |d OCLCQ |d OCLCF |d YDXCP |d EBLCP |d UV0 |d MHW |d OCLCQ |d AZK |d LOA |d OCLCO |d JBG |d OCLCO |d COCUF |d TOA |d OCLCO |d AGLDB |d CNNOR |d MOR |d PIFBR |d ZCU |d OCLCQ |d WY@ |d OCLCO |d U3W |d LUE |d UAB |d STF |d BRL |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d TOF |d OCLCQ |d WYU |d A6Q |d OCLCQ |d DKC |d OCLCQ |d K6U |d OCLCQ |d UKCRE |d VLY |d AJS |d UKAHL |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d INARC |d OCLCQ | ||
019 | |a 70758899 |a 171123304 |a 271786421 |a 437431986 |a 475917179 |a 488397983 |a 559659803 |a 646705943 |a 722102691 |a 813436749 |a 852655035 |a 888638331 |a 905978546 |a 961580507 |a 962678474 |a 966149392 |a 988448811 |a 991907453 |a 991952692 |a 1035665644 |a 1037519385 |a 1037755610 |a 1038620701 |a 1045465571 |a 1055338716 |a 1066431233 |a 1076314384 |a 1153459655 |a 1162025257 |a 1167346069 |a 1228615286 | ||
020 | |a 0511019424 |q (electronic bk.) | ||
020 | |a 9780511019425 |q (electronic bk.) | ||
020 | |a 9780511535055 |q (electronic bk.) | ||
020 | |a 0511535058 |q (electronic bk.) | ||
020 | |a 9780511045516 |q (electronic bk.) | ||
020 | |a 0511045514 |q (electronic bk.) | ||
020 | |a 9780511030215 |q (electronic bk. ; |q EB20) | ||
020 | |a 0511030215 |q (electronic bk. ; |q EB20) | ||
020 | |a 0511157061 | ||
020 | |a 9780511157066 | ||
020 | |a 1107125766 | ||
020 | |a 9781107125766 | ||
020 | |a 0511176287 | ||
020 | |a 9780511176289 | ||
020 | |a 9786610434060 | ||
020 | |a 6610434069 | ||
020 | |a 1280434066 | ||
020 | |a 9781280434068 | ||
020 | |a 0511329512 | ||
020 | |a 9780511329517 | ||
020 | |z 0521813638 | ||
020 | |z 9780521813631 | ||
020 | |z 0521675774 |q (pbk.) | ||
020 | |z 9780521675772 |q (pbk.) | ||
035 | |a (OCoLC)52568841 |z (OCoLC)70758899 |z (OCoLC)171123304 |z (OCoLC)271786421 |z (OCoLC)437431986 |z (OCoLC)475917179 |z (OCoLC)488397983 |z (OCoLC)559659803 |z (OCoLC)646705943 |z (OCoLC)722102691 |z (OCoLC)813436749 |z (OCoLC)852655035 |z (OCoLC)888638331 |z (OCoLC)905978546 |z (OCoLC)961580507 |z (OCoLC)962678474 |z (OCoLC)966149392 |z (OCoLC)988448811 |z (OCoLC)991907453 |z (OCoLC)991952692 |z (OCoLC)1035665644 |z (OCoLC)1037519385 |z (OCoLC)1037755610 |z (OCoLC)1038620701 |z (OCoLC)1045465571 |z (OCoLC)1055338716 |z (OCoLC)1066431233 |z (OCoLC)1076314384 |z (OCoLC)1153459655 |z (OCoLC)1162025257 |z (OCoLC)1167346069 |z (OCoLC)1228615286 | ||
050 | 4 | |a QC173.7 |b .B87 2002eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.14 |2 21 | |
084 | |a UO 4000 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Burgess, Mark, |d 1966- |1 https://id.oclc.org/worldcat/entity/E39PBJhMkRCtT3j8hbfpyqBgKd |0 http://id.loc.gov/authorities/names/n2001008293 | |
245 | 1 | 0 | |a Classical covariant fields / |c Mark Burgess. |
260 | |a Cambridge, U.K. ; |a New York : |b Cambridge University Press, |c 2002. | ||
300 | |a 1 online resource (xx, 529 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Cambridge monographs on mathematical physics | |
504 | |a Includes bibliographical references (pages 515-519) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |g pt. 1. |t Fields. |g 1. |t Introduction. |g 2. |t The electromagnetic field. |g 3. |t Field parameters. |g 4. |t The action principle. |g 5. |t Classical field dynamics. |g 6. |t Statistical interpretation of the field. |g 7. |t Examples and applications -- |g pt. 2. |t Groups and fields. |g 8. |t Field transformations. |g 9. |t Spacetime transformations. |g 10. |t Kinematical and dynamical transformations. |g 11. |t Position and momentum. |g 12. |t Charge and current. |g 13. |t The non-relativistic limit. |g 14. |t Unified kinematics and dynamics. |g 15. |t Epilogue: quantum field theory -- |g pt. 3. |t Reference: a compendium of fields. |g 16. |t Gallery of definitions. |g 17. |t The Schrodinger field. |g 18. |t The real Klein-Gordon field. |g 19. |t The complex Klein-Gordon field. |g 20. |t The Dirac field. |g 21. |t The Maxwell radiation field. |
520 | 1 | |a "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature. | |
520 | 8 | |a Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket | |
546 | |a English. | ||
650 | 0 | |a Field theory (Physics) |0 http://id.loc.gov/authorities/subjects/sh85048117 | |
650 | 6 | |a Théorie des champs (Physique) | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Field theory (Physics) |2 fast | |
650 | 7 | |a Feldtheorie |2 gnd |0 http://d-nb.info/gnd/4016698-3 | |
650 | 7 | |a Mathematische Physik |2 gnd |0 http://d-nb.info/gnd/4037952-8 | |
776 | 0 | 8 | |i Print version: |a Burgess, Mark, 1966- |t Classical covariant fields. |d Cambridge, U.K. ; New York : Cambridge University Press, 2002 |z 0521813638 |w (DLC) 2001043686 |w (OCoLC)47995886 |
830 | 0 | |a Cambridge monographs on mathematical physics. |0 http://id.loc.gov/authorities/names/n42005691 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=78359 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13422455 | ||
938 | |a Baker & Taylor |b BKTY |c 130.00 |d 130.00 |i 0521813638 |n 0003803236 |s active | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL202207 | ||
938 | |a EBSCOhost |b EBSC |n 78359 | ||
938 | |a YBP Library Services |b YANK |n 2616854 | ||
938 | |a YBP Library Services |b YANK |n 2591614 | ||
938 | |a Internet Archive |b INAR |n classicalcovaria0000burg | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm52568841 |
---|---|
_version_ | 1816881608169357312 |
adam_text | |
any_adam_object | |
author | Burgess, Mark, 1966- |
author_GND | http://id.loc.gov/authorities/names/n2001008293 |
author_facet | Burgess, Mark, 1966- |
author_role | |
author_sort | Burgess, Mark, 1966- |
author_variant | m b mb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.7 .B87 2002eb |
callnumber-search | QC173.7 .B87 2002eb |
callnumber-sort | QC 3173.7 B87 42002EB |
callnumber-subject | QC - Physics |
classification_rvk | UO 4000 |
collection | ZDB-4-EBA |
contents | Fields. Introduction. The electromagnetic field. Field parameters. The action principle. Classical field dynamics. Statistical interpretation of the field. Examples and applications -- Groups and fields. Field transformations. Spacetime transformations. Kinematical and dynamical transformations. Position and momentum. Charge and current. The non-relativistic limit. Unified kinematics and dynamics. Epilogue: quantum field theory -- Reference: a compendium of fields. Gallery of definitions. The Schrodinger field. The real Klein-Gordon field. The complex Klein-Gordon field. The Dirac field. The Maxwell radiation field. |
ctrlnum | (OCoLC)52568841 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06573cam a2200877 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm52568841 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030708s2002 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2001043686</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">BAKER</subfield><subfield code="d">CO3</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UV0</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COCUF</subfield><subfield code="d">TOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CNNOR</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">LUE</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">BRL</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">TOF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">A6Q</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">70758899</subfield><subfield code="a">171123304</subfield><subfield code="a">271786421</subfield><subfield code="a">437431986</subfield><subfield code="a">475917179</subfield><subfield code="a">488397983</subfield><subfield code="a">559659803</subfield><subfield code="a">646705943</subfield><subfield code="a">722102691</subfield><subfield code="a">813436749</subfield><subfield code="a">852655035</subfield><subfield code="a">888638331</subfield><subfield code="a">905978546</subfield><subfield code="a">961580507</subfield><subfield code="a">962678474</subfield><subfield code="a">966149392</subfield><subfield code="a">988448811</subfield><subfield code="a">991907453</subfield><subfield code="a">991952692</subfield><subfield code="a">1035665644</subfield><subfield code="a">1037519385</subfield><subfield code="a">1037755610</subfield><subfield code="a">1038620701</subfield><subfield code="a">1045465571</subfield><subfield code="a">1055338716</subfield><subfield code="a">1066431233</subfield><subfield code="a">1076314384</subfield><subfield code="a">1153459655</subfield><subfield code="a">1162025257</subfield><subfield code="a">1167346069</subfield><subfield code="a">1228615286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511019424</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511019425</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511535055</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511535058</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511045516</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511045514</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511030215</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">EB20)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511030215</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">EB20)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511157061</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511157066</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107125766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107125766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511176287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511176289</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786610434060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6610434069</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280434066</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280434068</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511329512</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511329517</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521813638</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521813631</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521675774</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521675772</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52568841</subfield><subfield code="z">(OCoLC)70758899</subfield><subfield code="z">(OCoLC)171123304</subfield><subfield code="z">(OCoLC)271786421</subfield><subfield code="z">(OCoLC)437431986</subfield><subfield code="z">(OCoLC)475917179</subfield><subfield code="z">(OCoLC)488397983</subfield><subfield code="z">(OCoLC)559659803</subfield><subfield code="z">(OCoLC)646705943</subfield><subfield code="z">(OCoLC)722102691</subfield><subfield code="z">(OCoLC)813436749</subfield><subfield code="z">(OCoLC)852655035</subfield><subfield code="z">(OCoLC)888638331</subfield><subfield code="z">(OCoLC)905978546</subfield><subfield code="z">(OCoLC)961580507</subfield><subfield code="z">(OCoLC)962678474</subfield><subfield code="z">(OCoLC)966149392</subfield><subfield code="z">(OCoLC)988448811</subfield><subfield code="z">(OCoLC)991907453</subfield><subfield code="z">(OCoLC)991952692</subfield><subfield code="z">(OCoLC)1035665644</subfield><subfield code="z">(OCoLC)1037519385</subfield><subfield code="z">(OCoLC)1037755610</subfield><subfield code="z">(OCoLC)1038620701</subfield><subfield code="z">(OCoLC)1045465571</subfield><subfield code="z">(OCoLC)1055338716</subfield><subfield code="z">(OCoLC)1066431233</subfield><subfield code="z">(OCoLC)1076314384</subfield><subfield code="z">(OCoLC)1153459655</subfield><subfield code="z">(OCoLC)1162025257</subfield><subfield code="z">(OCoLC)1167346069</subfield><subfield code="z">(OCoLC)1228615286</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC173.7</subfield><subfield code="b">.B87 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burgess, Mark,</subfield><subfield code="d">1966-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJhMkRCtT3j8hbfpyqBgKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001008293</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical covariant fields /</subfield><subfield code="c">Mark Burgess.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, U.K. ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 529 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 515-519) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">pt. 1.</subfield><subfield code="t">Fields.</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction.</subfield><subfield code="g">2.</subfield><subfield code="t">The electromagnetic field.</subfield><subfield code="g">3.</subfield><subfield code="t">Field parameters.</subfield><subfield code="g">4.</subfield><subfield code="t">The action principle.</subfield><subfield code="g">5.</subfield><subfield code="t">Classical field dynamics.</subfield><subfield code="g">6.</subfield><subfield code="t">Statistical interpretation of the field.</subfield><subfield code="g">7.</subfield><subfield code="t">Examples and applications --</subfield><subfield code="g">pt. 2.</subfield><subfield code="t">Groups and fields.</subfield><subfield code="g">8.</subfield><subfield code="t">Field transformations.</subfield><subfield code="g">9.</subfield><subfield code="t">Spacetime transformations.</subfield><subfield code="g">10.</subfield><subfield code="t">Kinematical and dynamical transformations.</subfield><subfield code="g">11.</subfield><subfield code="t">Position and momentum.</subfield><subfield code="g">12.</subfield><subfield code="t">Charge and current.</subfield><subfield code="g">13.</subfield><subfield code="t">The non-relativistic limit.</subfield><subfield code="g">14.</subfield><subfield code="t">Unified kinematics and dynamics.</subfield><subfield code="g">15.</subfield><subfield code="t">Epilogue: quantum field theory --</subfield><subfield code="g">pt. 3.</subfield><subfield code="t">Reference: a compendium of fields.</subfield><subfield code="g">16.</subfield><subfield code="t">Gallery of definitions.</subfield><subfield code="g">17.</subfield><subfield code="t">The Schrodinger field.</subfield><subfield code="g">18.</subfield><subfield code="t">The real Klein-Gordon field.</subfield><subfield code="g">19.</subfield><subfield code="t">The complex Klein-Gordon field.</subfield><subfield code="g">20.</subfield><subfield code="t">The Dirac field.</subfield><subfield code="g">21.</subfield><subfield code="t">The Maxwell radiation field.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Field theory (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048117</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des champs (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Field theory (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4016698-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4037952-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Burgess, Mark, 1966-</subfield><subfield code="t">Classical covariant fields.</subfield><subfield code="d">Cambridge, U.K. ; New York : Cambridge University Press, 2002</subfield><subfield code="z">0521813638</subfield><subfield code="w">(DLC) 2001043686</subfield><subfield code="w">(OCoLC)47995886</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005691</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=78359</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13422455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Baker & Taylor</subfield><subfield code="b">BKTY</subfield><subfield code="c">130.00</subfield><subfield code="d">130.00</subfield><subfield code="i">0521813638</subfield><subfield code="n">0003803236</subfield><subfield code="s">active</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL202207</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">78359</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2616854</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2591614</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">classicalcovaria0000burg</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm52568841 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:25Z |
institution | BVB |
isbn | 0511019424 9780511019425 9780511535055 0511535058 9780511045516 0511045514 9780511030215 0511030215 0511157061 9780511157066 1107125766 9781107125766 0511176287 9780511176289 9786610434060 6610434069 1280434066 9781280434068 0511329512 9780511329517 |
language | English |
lccn | 2001043686 |
oclc_num | 52568841 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 529 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on mathematical physics. |
series2 | Cambridge monographs on mathematical physics |
spelling | Burgess, Mark, 1966- https://id.oclc.org/worldcat/entity/E39PBJhMkRCtT3j8hbfpyqBgKd http://id.loc.gov/authorities/names/n2001008293 Classical covariant fields / Mark Burgess. Cambridge, U.K. ; New York : Cambridge University Press, 2002. 1 online resource (xx, 529 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Cambridge monographs on mathematical physics Includes bibliographical references (pages 515-519) and index. Print version record. pt. 1. Fields. 1. Introduction. 2. The electromagnetic field. 3. Field parameters. 4. The action principle. 5. Classical field dynamics. 6. Statistical interpretation of the field. 7. Examples and applications -- pt. 2. Groups and fields. 8. Field transformations. 9. Spacetime transformations. 10. Kinematical and dynamical transformations. 11. Position and momentum. 12. Charge and current. 13. The non-relativistic limit. 14. Unified kinematics and dynamics. 15. Epilogue: quantum field theory -- pt. 3. Reference: a compendium of fields. 16. Gallery of definitions. 17. The Schrodinger field. 18. The real Klein-Gordon field. 19. The complex Klein-Gordon field. 20. The Dirac field. 21. The Maxwell radiation field. "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature. Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket English. Field theory (Physics) http://id.loc.gov/authorities/subjects/sh85048117 Théorie des champs (Physique) SCIENCE Waves & Wave Mechanics. bisacsh Field theory (Physics) fast Feldtheorie gnd http://d-nb.info/gnd/4016698-3 Mathematische Physik gnd http://d-nb.info/gnd/4037952-8 Print version: Burgess, Mark, 1966- Classical covariant fields. Cambridge, U.K. ; New York : Cambridge University Press, 2002 0521813638 (DLC) 2001043686 (OCoLC)47995886 Cambridge monographs on mathematical physics. http://id.loc.gov/authorities/names/n42005691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=78359 Volltext |
spellingShingle | Burgess, Mark, 1966- Classical covariant fields / Cambridge monographs on mathematical physics. Fields. Introduction. The electromagnetic field. Field parameters. The action principle. Classical field dynamics. Statistical interpretation of the field. Examples and applications -- Groups and fields. Field transformations. Spacetime transformations. Kinematical and dynamical transformations. Position and momentum. Charge and current. The non-relativistic limit. Unified kinematics and dynamics. Epilogue: quantum field theory -- Reference: a compendium of fields. Gallery of definitions. The Schrodinger field. The real Klein-Gordon field. The complex Klein-Gordon field. The Dirac field. The Maxwell radiation field. Field theory (Physics) http://id.loc.gov/authorities/subjects/sh85048117 Théorie des champs (Physique) SCIENCE Waves & Wave Mechanics. bisacsh Field theory (Physics) fast Feldtheorie gnd http://d-nb.info/gnd/4016698-3 Mathematische Physik gnd http://d-nb.info/gnd/4037952-8 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048117 http://d-nb.info/gnd/4016698-3 http://d-nb.info/gnd/4037952-8 |
title | Classical covariant fields / |
title_alt | Fields. Introduction. The electromagnetic field. Field parameters. The action principle. Classical field dynamics. Statistical interpretation of the field. Examples and applications -- Groups and fields. Field transformations. Spacetime transformations. Kinematical and dynamical transformations. Position and momentum. Charge and current. The non-relativistic limit. Unified kinematics and dynamics. Epilogue: quantum field theory -- Reference: a compendium of fields. Gallery of definitions. The Schrodinger field. The real Klein-Gordon field. The complex Klein-Gordon field. The Dirac field. The Maxwell radiation field. |
title_auth | Classical covariant fields / |
title_exact_search | Classical covariant fields / |
title_full | Classical covariant fields / Mark Burgess. |
title_fullStr | Classical covariant fields / Mark Burgess. |
title_full_unstemmed | Classical covariant fields / Mark Burgess. |
title_short | Classical covariant fields / |
title_sort | classical covariant fields |
topic | Field theory (Physics) http://id.loc.gov/authorities/subjects/sh85048117 Théorie des champs (Physique) SCIENCE Waves & Wave Mechanics. bisacsh Field theory (Physics) fast Feldtheorie gnd http://d-nb.info/gnd/4016698-3 Mathematische Physik gnd http://d-nb.info/gnd/4037952-8 |
topic_facet | Field theory (Physics) Théorie des champs (Physique) SCIENCE Waves & Wave Mechanics. Feldtheorie Mathematische Physik |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=78359 |
work_keys_str_mv | AT burgessmark classicalcovariantfields |