Selfsimilar processes /:
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2002.
|
Schriftenreihe: | Princeton series in applied mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t. |
Beschreibung: | 1 online resource (x, 111 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 101-108) and index. |
ISBN: | 1400814243 9781400814244 9781400825103 1400825105 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm52255009 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030515s2002 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCG |d OCLCQ |d OCLCF |d OCLCO |d NLGGC |d OCLCQ |d E7B |d REDDC |d EBLCP |d MERUC |d IDEBK |d DEBSZ |d JSTOR |d OCLCQ |d COO |d AZK |d COCUF |d UIU |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d OCLCQ |d IOG |d U3W |d ROC |d EZ9 |d MNS |d RCC |d STF |d WRM |d VTS |d XQH |d NRAMU |d MUO |d ICG |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d UKCRE |d AJS |d UWK |d IEEEE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
019 | |a 437140445 |a 609842105 |a 646805524 |a 961551203 |a 962621966 |a 988453797 |a 992025595 |a 994983506 |a 1020518905 |a 1037941413 |a 1038650389 |a 1045473649 |a 1055396575 |a 1064070617 |a 1153478055 |a 1181910092 | ||
020 | |a 1400814243 |q (electronic bk.) | ||
020 | |a 9781400814244 |q (electronic bk.) | ||
020 | |a 9781400825103 |q (electronic bk.) | ||
020 | |a 1400825105 |q (electronic bk.) | ||
020 | |z 0691096279 |q (alk. paper) | ||
020 | |z 9780691096278 | ||
024 | 7 | |a 10.1515/9781400825103 |2 doi | |
035 | |a (OCoLC)52255009 |z (OCoLC)437140445 |z (OCoLC)609842105 |z (OCoLC)646805524 |z (OCoLC)961551203 |z (OCoLC)962621966 |z (OCoLC)988453797 |z (OCoLC)992025595 |z (OCoLC)994983506 |z (OCoLC)1020518905 |z (OCoLC)1037941413 |z (OCoLC)1038650389 |z (OCoLC)1045473649 |z (OCoLC)1055396575 |z (OCoLC)1064070617 |z (OCoLC)1153478055 |z (OCoLC)1181910092 | ||
037 | |a 22573/ctt10m2m |b JSTOR | ||
037 | |a 9452497 |b IEEE | ||
050 | 4 | |a QA274.9 |b .E43 2002eb | |
072 | 7 | |a MAT |x 029040 |2 bisacsh | |
082 | 7 | |a 519.23 |2 21 | |
084 | |a SK 820 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Embrechts, Paul, |d 1953- |1 https://id.oclc.org/worldcat/entity/E39PBJdcv8rhpCWw8YwFxGC84q |0 http://id.loc.gov/authorities/names/n97028002 | |
245 | 1 | 0 | |a Selfsimilar processes / |c Paul Embrechts and Makoto Maejima. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2002. | ||
300 | |a 1 online resource (x, 111 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton series in applied mathematics | |
504 | |a Includes bibliographical references (pages 101-108) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. | |
520 | |a The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t. | ||
546 | |a In English. | ||
650 | 0 | |a Self-similar processes. |0 http://id.loc.gov/authorities/subjects/sh2003001114 | |
650 | 0 | |a Distribution (Probability theory) |0 http://id.loc.gov/authorities/subjects/sh85038545 | |
650 | 6 | |a Processus autosimilaires. | |
650 | 6 | |a Distribution (Théorie des probabilités) | |
650 | 7 | |a distribution (statistics-related concept) |2 aat | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Stochastic Processes. |2 bisacsh | |
650 | 7 | |a Distribution (Probability theory) |2 fast | |
650 | 7 | |a Self-similar processes |2 fast | |
653 | |a Almost surely. | ||
653 | |a Approximation. | ||
653 | |a Asymptotic analysis. | ||
653 | |a Autocorrelation. | ||
653 | |a Autoregressive conditional heteroskedasticity. | ||
653 | |a Autoregressive-moving-average model. | ||
653 | |a Availability. | ||
653 | |a Benoit Mandelbrot. | ||
653 | |a Brownian motion. | ||
653 | |a Central limit theorem. | ||
653 | |a Change of variables. | ||
653 | |a Computational problem. | ||
653 | |a Confidence interval. | ||
653 | |a Correlogram. | ||
653 | |a Covariance matrix. | ||
653 | |a Data analysis. | ||
653 | |a Data set. | ||
653 | |a Determination. | ||
653 | |a Fixed point (mathematics). | ||
653 | |a Foreign exchange market. | ||
653 | |a Fractional Brownian motion. | ||
653 | |a Function (mathematics). | ||
653 | |a Gaussian process. | ||
653 | |a Heavy-tailed distribution. | ||
653 | |a Heuristic method. | ||
653 | |a High frequency. | ||
653 | |a Inference. | ||
653 | |a Infimum and supremum. | ||
653 | |a Instance (computer science). | ||
653 | |a Internet traffic. | ||
653 | |a Joint probability distribution. | ||
653 | |a Likelihood function. | ||
653 | |a Limit (mathematics). | ||
653 | |a Linear regression. | ||
653 | |a Log-log plot. | ||
653 | |a Marginal distribution. | ||
653 | |a Mathematica. | ||
653 | |a Mathematical finance. | ||
653 | |a Mathematics. | ||
653 | |a Methodology. | ||
653 | |a Mixture model. | ||
653 | |a Model selection. | ||
653 | |a Normal distribution. | ||
653 | |a Parametric model. | ||
653 | |a Power law. | ||
653 | |a Probability theory. | ||
653 | |a Publication. | ||
653 | |a Random variable. | ||
653 | |a Regime. | ||
653 | |a Renormalization. | ||
653 | |a Result. | ||
653 | |a Riemann sum. | ||
653 | |a Self-similar process. | ||
653 | |a Self-similarity. | ||
653 | |a Simulation. | ||
653 | |a Smoothness. | ||
653 | |a Spectral density. | ||
653 | |a Square root. | ||
653 | |a Stable distribution. | ||
653 | |a Stable process. | ||
653 | |a Stationary process. | ||
653 | |a Stationary sequence. | ||
653 | |a Statistical inference. | ||
653 | |a Statistical physics. | ||
653 | |a Statistics. | ||
653 | |a Stochastic calculus. | ||
653 | |a Stochastic process. | ||
653 | |a Technology. | ||
653 | |a Telecommunication. | ||
653 | |a Textbook. | ||
653 | |a Theorem. | ||
653 | |a Time series. | ||
653 | |a Variance. | ||
653 | |a Wavelet. | ||
653 | |a Website. | ||
700 | 1 | |a Maejima, Makoto. | |
758 | |i has work: |a Selfsimilar processes (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfJ8YwQ7Gc8Wk4t4Wpybd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Embrechts, Paul, 1953- |t Selfsimilar processes. |d Princeton, N.J. : Princeton University Press, ©2002 |z 0691096279 |w (DLC) 2002108314 |w (OCoLC)48837321 |
830 | 0 | |a Princeton series in applied mathematics. |0 http://id.loc.gov/authorities/names/no2002046464 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=81049 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26387204 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL445477 | ||
938 | |a ebrary |b EBRY |n ebr10284069 | ||
938 | |a EBSCOhost |b EBSC |n 81049 | ||
938 | |a YBP Library Services |b YANK |n 2345704 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm52255009 |
---|---|
_version_ | 1816881607239270400 |
adam_text | |
any_adam_object | |
author | Embrechts, Paul, 1953- |
author2 | Maejima, Makoto |
author2_role | |
author2_variant | m m mm |
author_GND | http://id.loc.gov/authorities/names/n97028002 |
author_facet | Embrechts, Paul, 1953- Maejima, Makoto |
author_role | |
author_sort | Embrechts, Paul, 1953- |
author_variant | p e pe |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.9 .E43 2002eb |
callnumber-search | QA274.9 .E43 2002eb |
callnumber-sort | QA 3274.9 E43 42002EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
collection | ZDB-4-EBA |
contents | Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. |
ctrlnum | (OCoLC)52255009 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07410cam a2201585 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm52255009 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030515s2002 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">ROC</subfield><subfield code="d">EZ9</subfield><subfield code="d">MNS</subfield><subfield code="d">RCC</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">XQH</subfield><subfield code="d">NRAMU</subfield><subfield code="d">MUO</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">437140445</subfield><subfield code="a">609842105</subfield><subfield code="a">646805524</subfield><subfield code="a">961551203</subfield><subfield code="a">962621966</subfield><subfield code="a">988453797</subfield><subfield code="a">992025595</subfield><subfield code="a">994983506</subfield><subfield code="a">1020518905</subfield><subfield code="a">1037941413</subfield><subfield code="a">1038650389</subfield><subfield code="a">1045473649</subfield><subfield code="a">1055396575</subfield><subfield code="a">1064070617</subfield><subfield code="a">1153478055</subfield><subfield code="a">1181910092</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400814243</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400814244</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400825103</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400825105</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691096279</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691096278</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400825103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52255009</subfield><subfield code="z">(OCoLC)437140445</subfield><subfield code="z">(OCoLC)609842105</subfield><subfield code="z">(OCoLC)646805524</subfield><subfield code="z">(OCoLC)961551203</subfield><subfield code="z">(OCoLC)962621966</subfield><subfield code="z">(OCoLC)988453797</subfield><subfield code="z">(OCoLC)992025595</subfield><subfield code="z">(OCoLC)994983506</subfield><subfield code="z">(OCoLC)1020518905</subfield><subfield code="z">(OCoLC)1037941413</subfield><subfield code="z">(OCoLC)1038650389</subfield><subfield code="z">(OCoLC)1045473649</subfield><subfield code="z">(OCoLC)1055396575</subfield><subfield code="z">(OCoLC)1064070617</subfield><subfield code="z">(OCoLC)1153478055</subfield><subfield code="z">(OCoLC)1181910092</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt10m2m</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9452497</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.9</subfield><subfield code="b">.E43 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Embrechts, Paul,</subfield><subfield code="d">1953-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdcv8rhpCWw8YwFxGC84q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97028002</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selfsimilar processes /</subfield><subfield code="c">Paul Embrechts and Makoto Maejima.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 111 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 101-108) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Self-similar processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2003001114</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Distribution (Probability theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85038545</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus autosimilaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Distribution (Théorie des probabilités)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">distribution (statistics-related concept)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Stochastic Processes.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distribution (Probability theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-similar processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Almost surely.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Approximation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Asymptotic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Autocorrelation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Autoregressive conditional heteroskedasticity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Autoregressive-moving-average model.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Availability.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Benoit Mandelbrot.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brownian motion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Central limit theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Change of variables.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Confidence interval.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Correlogram.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Covariance matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Determination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fixed point (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Foreign exchange market.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fractional Brownian motion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gaussian process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heavy-tailed distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heuristic method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">High frequency.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inference.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Instance (computer science).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Internet traffic.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Joint probability distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Likelihood function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Limit (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear regression.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Log-log plot.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Marginal distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematica.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical finance.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Methodology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mixture model.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Model selection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Normal distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parametric model.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Power law.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Publication.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Random variable.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Regime.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Renormalization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Result.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann sum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-similar process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-similarity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Simulation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Smoothness.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Spectral density.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Square root.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stable distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stable process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stationary process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stationary sequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistical inference.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistical physics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastic calculus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastic process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Telecommunication.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Textbook.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Time series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variance.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wavelet.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Website.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maejima, Makoto.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Selfsimilar processes (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfJ8YwQ7Gc8Wk4t4Wpybd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Embrechts, Paul, 1953-</subfield><subfield code="t">Selfsimilar processes.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2002</subfield><subfield code="z">0691096279</subfield><subfield code="w">(DLC) 2002108314</subfield><subfield code="w">(OCoLC)48837321</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton series in applied mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002046464</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=81049</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387204</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL445477</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10284069</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">81049</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2345704</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm52255009 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:24Z |
institution | BVB |
isbn | 1400814243 9781400814244 9781400825103 1400825105 |
language | English |
oclc_num | 52255009 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 111 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Princeton University Press, |
record_format | marc |
series | Princeton series in applied mathematics. |
series2 | Princeton series in applied mathematics |
spelling | Embrechts, Paul, 1953- https://id.oclc.org/worldcat/entity/E39PBJdcv8rhpCWw8YwFxGC84q http://id.loc.gov/authorities/names/n97028002 Selfsimilar processes / Paul Embrechts and Makoto Maejima. Princeton, N.J. : Princeton University Press, ©2002. 1 online resource (x, 111 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Princeton series in applied mathematics Includes bibliographical references (pages 101-108) and index. Print version record. Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t. In English. Self-similar processes. http://id.loc.gov/authorities/subjects/sh2003001114 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Processus autosimilaires. Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Distribution (Probability theory) fast Self-similar processes fast Almost surely. Approximation. Asymptotic analysis. Autocorrelation. Autoregressive conditional heteroskedasticity. Autoregressive-moving-average model. Availability. Benoit Mandelbrot. Brownian motion. Central limit theorem. Change of variables. Computational problem. Confidence interval. Correlogram. Covariance matrix. Data analysis. Data set. Determination. Fixed point (mathematics). Foreign exchange market. Fractional Brownian motion. Function (mathematics). Gaussian process. Heavy-tailed distribution. Heuristic method. High frequency. Inference. Infimum and supremum. Instance (computer science). Internet traffic. Joint probability distribution. Likelihood function. Limit (mathematics). Linear regression. Log-log plot. Marginal distribution. Mathematica. Mathematical finance. Mathematics. Methodology. Mixture model. Model selection. Normal distribution. Parametric model. Power law. Probability theory. Publication. Random variable. Regime. Renormalization. Result. Riemann sum. Self-similar process. Self-similarity. Simulation. Smoothness. Spectral density. Square root. Stable distribution. Stable process. Stationary process. Stationary sequence. Statistical inference. Statistical physics. Statistics. Stochastic calculus. Stochastic process. Technology. Telecommunication. Textbook. Theorem. Time series. Variance. Wavelet. Website. Maejima, Makoto. has work: Selfsimilar processes (Text) https://id.oclc.org/worldcat/entity/E39PCGfJ8YwQ7Gc8Wk4t4Wpybd https://id.oclc.org/worldcat/ontology/hasWork Print version: Embrechts, Paul, 1953- Selfsimilar processes. Princeton, N.J. : Princeton University Press, ©2002 0691096279 (DLC) 2002108314 (OCoLC)48837321 Princeton series in applied mathematics. http://id.loc.gov/authorities/names/no2002046464 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=81049 Volltext |
spellingShingle | Embrechts, Paul, 1953- Selfsimilar processes / Princeton series in applied mathematics. Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. Self-similar processes. http://id.loc.gov/authorities/subjects/sh2003001114 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Processus autosimilaires. Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Distribution (Probability theory) fast Self-similar processes fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2003001114 http://id.loc.gov/authorities/subjects/sh85038545 |
title | Selfsimilar processes / |
title_auth | Selfsimilar processes / |
title_exact_search | Selfsimilar processes / |
title_full | Selfsimilar processes / Paul Embrechts and Makoto Maejima. |
title_fullStr | Selfsimilar processes / Paul Embrechts and Makoto Maejima. |
title_full_unstemmed | Selfsimilar processes / Paul Embrechts and Makoto Maejima. |
title_short | Selfsimilar processes / |
title_sort | selfsimilar processes |
topic | Self-similar processes. http://id.loc.gov/authorities/subjects/sh2003001114 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Processus autosimilaires. Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Distribution (Probability theory) fast Self-similar processes fast |
topic_facet | Self-similar processes. Distribution (Probability theory) Processus autosimilaires. Distribution (Théorie des probabilités) distribution (statistics-related concept) MATHEMATICS Probability & Statistics Stochastic Processes. Self-similar processes |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=81049 |
work_keys_str_mv | AT embrechtspaul selfsimilarprocesses AT maejimamakoto selfsimilarprocesses |