A guide to Monte Carlo simulations in statistical physics /:
This book deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics as well as in related fields, for example polymer science and lattice gauge theory. After briefly recalling essential background in statistical mec...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2000.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics as well as in related fields, for example polymer science and lattice gauge theory. After briefly recalling essential background in statistical mechanics and probability theory, the authors give a succinct overview of simple sampling methods. The next several chapters develop the importance sampling method. The concepts behind the various simulation algorithms are explained. The fact that simulations deal with small systems is emphasized. Othe. |
Beschreibung: | 1 online resource (xiii, 384 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 0511010265 9780511010262 0511033141 9780511033148 0511151225 9780511151224 9780521653145 0521653142 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm51036668 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 021119s2000 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCG |d OCLCQ |d OCLCF |d OCLCO |d NLGGC |d VVN |d OQP |d CO3 |d E7B |d EBLCP |d YDXCP |d DKDLA |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFBR |d ZCU |d MERUC |d OCLCQ |d U3W |d BRL |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d A6Q |d OCLCQ |d DKC |d OCLCQ |d K6U |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 49848337 |a 56727240 |a 171122280 |a 888758072 |a 961633801 |a 962672178 |a 968282707 |a 988449192 |a 991910583 |a 1037482792 |a 1037788981 |a 1038672522 |a 1045471370 |a 1055337081 |a 1062900183 |a 1076307228 |a 1153528220 |a 1228602526 | ||
020 | |a 0511010265 |q (electronic bk.) | ||
020 | |a 9780511010262 |q (electronic bk.) | ||
020 | |a 0511033141 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 9780511033148 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 0511151225 | ||
020 | |a 9780511151224 | ||
020 | |a 9780521653145 | ||
020 | |a 0521653142 | ||
020 | |z 0521653142 |q (hardbound) | ||
035 | |a (OCoLC)51036668 |z (OCoLC)49848337 |z (OCoLC)56727240 |z (OCoLC)171122280 |z (OCoLC)888758072 |z (OCoLC)961633801 |z (OCoLC)962672178 |z (OCoLC)968282707 |z (OCoLC)988449192 |z (OCoLC)991910583 |z (OCoLC)1037482792 |z (OCoLC)1037788981 |z (OCoLC)1038672522 |z (OCoLC)1045471370 |z (OCoLC)1055337081 |z (OCoLC)1062900183 |z (OCoLC)1076307228 |z (OCoLC)1153528220 |z (OCoLC)1228602526 | ||
050 | 4 | |a QC174.85.M64 |b L36 2000eb | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.13 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Landau, David P. | |
245 | 1 | 2 | |a A guide to Monte Carlo simulations in statistical physics / |c David P. Landau, Kurt Binder. |
246 | 3 | 0 | |a Monte Carlo simulations in statistical physics |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2000. | ||
300 | |a 1 online resource (xiii, 384 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface -- 1 Introduction -- 1.1 What is a Monte Carlo simulation -- 1.2 What problems can we solve with it? -- 1.3 What difficulties will we encounter? -- 1.3.1 Limited computer time and memory -- 1.3.2 Statistical and other errors -- 1.4 What strategy should we follw in approaching a problem? -- 1.5 How do simulations relate to theory and experiment? -- 2 Some necessary background -- 2.1 Thermodynamics and statistical mechanics: a quick reminder -- 2.1.1 Basic notions -- 2.1.2 Phase transitions -- 2.1.3 Ergodicity and broken symmetry. | |
505 | 8 | |a 2.1.4 Fluctuations and the Ginzburg criterion -- 2.1.5 A standard exercise: the ferromagnetic Ising model -- 2.2 Probabilty theory -- 2.2.1 Basic notions -- 2.2.2 Special probability distributions and the central limit theorem -- 2.2.3 Statistical errors -- 2.2.4 Markov chains and master equations -- 2.2.5 The 'art' of random number generation -- 2.3 Non-equilibrium and dynamics: some introductory comments -- 2.3.1 Physical applications of master equations -- 2.3.2 Conservation laws and their consequences -- 2.3.3 Critical slowing down at phase transitions -- 2.3.4 Transport coefficients. | |
505 | 8 | |a 2.3.5 Concluding comments: why bother about dynamics whendoing Monte Carlo for statics? -- References -- 3 Simple sampling Monte Carlo methods -- 3.1 Introduction -- 3.2 Comparisons of methods for numerical integration of given functions -- 3.2.1 Simple methods -- 3.2.2 Intelligent methods -- 3.3 Boundary value problems -- 3.4 Simulation of radioactive decay -- 3.5 Simulation of transport properties -- 3.5.1 Neutron support -- 3.5.2 Fluid flow -- 3.6 The percolation problem -- 3.61 Site percolation -- 3.6.2 Cluster counting: the Hoshen-Kopelman alogorithm -- 3.6.3 Other percolation models. | |
505 | 8 | |a 3.7 Finding the groundstate of a Hamiltonian -- 3.8 Generation of 'random' walks -- 3.8.1 Introduction -- 3.8.2 Random walks -- 3.8.3 Self-avoiding walks -- 3.8.4 Growing walks and other models -- 3.9 Final remarks -- References -- 4 Importance sampling Monte Carlo methods -- 4.1 Introduction -- 4.2 The simplest case: single spin-flip sampling for the simple Ising model -- 4.2.1 Algorithm -- 4.2.2 Boundary conditions -- 4.2.3 Finite size effects -- 4.2.4 Finite sampling time effects -- 4.2.5 Critical relaxation -- 4.3 Other discrete variable models. | |
505 | 8 | |a 4.3.1 Ising models with competing interactions -- 4.3.2 q-state Potts models -- 4.3.3 Baxter and Baxter-Wu models -- 4.3.4. Clock models -- 4.3.5 Ising spin glass models -- 4.3.6 Complex fluid models -- 4.4 Spin-exchange sampling -- 4.4.1 Constant magnetization simulations -- 4.4.2 Phase separation -- 4.4.3 Diffusion -- 4.4.4 Hydrodynamic slowing down -- 4.5 Microcanonical methods -- 4.5.1 Demon algorithm -- 4.5.2 Dynamic ensemble -- 4.5.3 Q2R -- 4.6 General remarks, choice of ensemble -- 4.7 Staticsand dynamics of polymer models on lattices -- 4.7.1 Background -- 4.7.2 Fixed length bond methods. | |
520 | |a This book deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics as well as in related fields, for example polymer science and lattice gauge theory. After briefly recalling essential background in statistical mechanics and probability theory, the authors give a succinct overview of simple sampling methods. The next several chapters develop the importance sampling method. The concepts behind the various simulation algorithms are explained. The fact that simulations deal with small systems is emphasized. Othe. | ||
650 | 0 | |a Monte Carlo method. |0 http://id.loc.gov/authorities/subjects/sh85087032 | |
650 | 0 | |a Statistical physics. |0 http://id.loc.gov/authorities/subjects/sh85127573 | |
650 | 2 | |a Monte Carlo Method |0 https://id.nlm.nih.gov/mesh/D009010 | |
650 | 6 | |a Méthode de Monte-Carlo. | |
650 | 6 | |a Physique statistique. | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a Monte Carlo method |2 fast | |
650 | 7 | |a Statistical physics |2 fast | |
650 | 1 | 7 | |a Monte Carlo-methode. |2 gtt |
650 | 1 | 7 | |a Statistische mechanica. |0 (NL-LeOCL)078675197 |2 gtt |
650 | 1 | 7 | |a Simulatie. |2 gtt |
650 | 7 | |a MÉTODO DE MONTE CARLO. |2 larpcal | |
650 | 7 | |a MECÂNICA ESTATÍSTICA. |2 larpcal | |
700 | 1 | |a Binder, K. |q (Kurt), |d 1944- |1 https://id.oclc.org/worldcat/entity/E39PBJwmVvQMQChF6g4m6hqqQq |0 http://id.loc.gov/authorities/names/n83197356 | |
776 | 0 | 8 | |i Print version: |a Landau, David P. |t Guide to Monte Carlo simulations in statistical physics. |d Cambridge ; New York : Cambridge University Press, 2000 |z 0521653142 |w (DLC) 99038308 |w (OCoLC)41871513 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=72816 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL143909 | ||
938 | |a EBSCOhost |b EBSC |n 72816 | ||
938 | |a YBP Library Services |b YANK |n 2591204 | ||
938 | |a YBP Library Services |b YANK |n 2299977 | ||
938 | |a YBP Library Services |b YANK |n 2617116 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm51036668 |
---|---|
_version_ | 1816881603274604545 |
adam_text | |
any_adam_object | |
author | Landau, David P. |
author2 | Binder, K. (Kurt), 1944- |
author2_role | |
author2_variant | k b kb |
author_GND | http://id.loc.gov/authorities/names/n83197356 |
author_facet | Landau, David P. Binder, K. (Kurt), 1944- |
author_role | |
author_sort | Landau, David P. |
author_variant | d p l dp dpl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.85.M64 L36 2000eb |
callnumber-search | QC174.85.M64 L36 2000eb |
callnumber-sort | QC 3174.85 M64 L36 42000EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface -- 1 Introduction -- 1.1 What is a Monte Carlo simulation -- 1.2 What problems can we solve with it? -- 1.3 What difficulties will we encounter? -- 1.3.1 Limited computer time and memory -- 1.3.2 Statistical and other errors -- 1.4 What strategy should we follw in approaching a problem? -- 1.5 How do simulations relate to theory and experiment? -- 2 Some necessary background -- 2.1 Thermodynamics and statistical mechanics: a quick reminder -- 2.1.1 Basic notions -- 2.1.2 Phase transitions -- 2.1.3 Ergodicity and broken symmetry. 2.1.4 Fluctuations and the Ginzburg criterion -- 2.1.5 A standard exercise: the ferromagnetic Ising model -- 2.2 Probabilty theory -- 2.2.1 Basic notions -- 2.2.2 Special probability distributions and the central limit theorem -- 2.2.3 Statistical errors -- 2.2.4 Markov chains and master equations -- 2.2.5 The 'art' of random number generation -- 2.3 Non-equilibrium and dynamics: some introductory comments -- 2.3.1 Physical applications of master equations -- 2.3.2 Conservation laws and their consequences -- 2.3.3 Critical slowing down at phase transitions -- 2.3.4 Transport coefficients. 2.3.5 Concluding comments: why bother about dynamics whendoing Monte Carlo for statics? -- References -- 3 Simple sampling Monte Carlo methods -- 3.1 Introduction -- 3.2 Comparisons of methods for numerical integration of given functions -- 3.2.1 Simple methods -- 3.2.2 Intelligent methods -- 3.3 Boundary value problems -- 3.4 Simulation of radioactive decay -- 3.5 Simulation of transport properties -- 3.5.1 Neutron support -- 3.5.2 Fluid flow -- 3.6 The percolation problem -- 3.61 Site percolation -- 3.6.2 Cluster counting: the Hoshen-Kopelman alogorithm -- 3.6.3 Other percolation models. 3.7 Finding the groundstate of a Hamiltonian -- 3.8 Generation of 'random' walks -- 3.8.1 Introduction -- 3.8.2 Random walks -- 3.8.3 Self-avoiding walks -- 3.8.4 Growing walks and other models -- 3.9 Final remarks -- References -- 4 Importance sampling Monte Carlo methods -- 4.1 Introduction -- 4.2 The simplest case: single spin-flip sampling for the simple Ising model -- 4.2.1 Algorithm -- 4.2.2 Boundary conditions -- 4.2.3 Finite size effects -- 4.2.4 Finite sampling time effects -- 4.2.5 Critical relaxation -- 4.3 Other discrete variable models. 4.3.1 Ising models with competing interactions -- 4.3.2 q-state Potts models -- 4.3.3 Baxter and Baxter-Wu models -- 4.3.4. Clock models -- 4.3.5 Ising spin glass models -- 4.3.6 Complex fluid models -- 4.4 Spin-exchange sampling -- 4.4.1 Constant magnetization simulations -- 4.4.2 Phase separation -- 4.4.3 Diffusion -- 4.4.4 Hydrodynamic slowing down -- 4.5 Microcanonical methods -- 4.5.1 Demon algorithm -- 4.5.2 Dynamic ensemble -- 4.5.3 Q2R -- 4.6 General remarks, choice of ensemble -- 4.7 Staticsand dynamics of polymer models on lattices -- 4.7.1 Background -- 4.7.2 Fixed length bond methods. |
ctrlnum | (OCoLC)51036668 |
dewey-full | 530.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13 |
dewey-search | 530.13 |
dewey-sort | 3530.13 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07242cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm51036668 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">021119s2000 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">VVN</subfield><subfield code="d">OQP</subfield><subfield code="d">CO3</subfield><subfield code="d">E7B</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">BRL</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">A6Q</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">49848337</subfield><subfield code="a">56727240</subfield><subfield code="a">171122280</subfield><subfield code="a">888758072</subfield><subfield code="a">961633801</subfield><subfield code="a">962672178</subfield><subfield code="a">968282707</subfield><subfield code="a">988449192</subfield><subfield code="a">991910583</subfield><subfield code="a">1037482792</subfield><subfield code="a">1037788981</subfield><subfield code="a">1038672522</subfield><subfield code="a">1045471370</subfield><subfield code="a">1055337081</subfield><subfield code="a">1062900183</subfield><subfield code="a">1076307228</subfield><subfield code="a">1153528220</subfield><subfield code="a">1228602526</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511010265</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511010262</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511033141</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511033148</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511151225</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511151224</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521653145</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521653142</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521653142</subfield><subfield code="q">(hardbound)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51036668</subfield><subfield code="z">(OCoLC)49848337</subfield><subfield code="z">(OCoLC)56727240</subfield><subfield code="z">(OCoLC)171122280</subfield><subfield code="z">(OCoLC)888758072</subfield><subfield code="z">(OCoLC)961633801</subfield><subfield code="z">(OCoLC)962672178</subfield><subfield code="z">(OCoLC)968282707</subfield><subfield code="z">(OCoLC)988449192</subfield><subfield code="z">(OCoLC)991910583</subfield><subfield code="z">(OCoLC)1037482792</subfield><subfield code="z">(OCoLC)1037788981</subfield><subfield code="z">(OCoLC)1038672522</subfield><subfield code="z">(OCoLC)1045471370</subfield><subfield code="z">(OCoLC)1055337081</subfield><subfield code="z">(OCoLC)1062900183</subfield><subfield code="z">(OCoLC)1076307228</subfield><subfield code="z">(OCoLC)1153528220</subfield><subfield code="z">(OCoLC)1228602526</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.85.M64</subfield><subfield code="b">L36 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.13</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landau, David P.</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A guide to Monte Carlo simulations in statistical physics /</subfield><subfield code="c">David P. Landau, Kurt Binder.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Monte Carlo simulations in statistical physics</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 384 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- 1 Introduction -- 1.1 What is a Monte Carlo simulation -- 1.2 What problems can we solve with it? -- 1.3 What difficulties will we encounter? -- 1.3.1 Limited computer time and memory -- 1.3.2 Statistical and other errors -- 1.4 What strategy should we follw in approaching a problem? -- 1.5 How do simulations relate to theory and experiment? -- 2 Some necessary background -- 2.1 Thermodynamics and statistical mechanics: a quick reminder -- 2.1.1 Basic notions -- 2.1.2 Phase transitions -- 2.1.3 Ergodicity and broken symmetry.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.4 Fluctuations and the Ginzburg criterion -- 2.1.5 A standard exercise: the ferromagnetic Ising model -- 2.2 Probabilty theory -- 2.2.1 Basic notions -- 2.2.2 Special probability distributions and the central limit theorem -- 2.2.3 Statistical errors -- 2.2.4 Markov chains and master equations -- 2.2.5 The 'art' of random number generation -- 2.3 Non-equilibrium and dynamics: some introductory comments -- 2.3.1 Physical applications of master equations -- 2.3.2 Conservation laws and their consequences -- 2.3.3 Critical slowing down at phase transitions -- 2.3.4 Transport coefficients.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.5 Concluding comments: why bother about dynamics whendoing Monte Carlo for statics? -- References -- 3 Simple sampling Monte Carlo methods -- 3.1 Introduction -- 3.2 Comparisons of methods for numerical integration of given functions -- 3.2.1 Simple methods -- 3.2.2 Intelligent methods -- 3.3 Boundary value problems -- 3.4 Simulation of radioactive decay -- 3.5 Simulation of transport properties -- 3.5.1 Neutron support -- 3.5.2 Fluid flow -- 3.6 The percolation problem -- 3.61 Site percolation -- 3.6.2 Cluster counting: the Hoshen-Kopelman alogorithm -- 3.6.3 Other percolation models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7 Finding the groundstate of a Hamiltonian -- 3.8 Generation of 'random' walks -- 3.8.1 Introduction -- 3.8.2 Random walks -- 3.8.3 Self-avoiding walks -- 3.8.4 Growing walks and other models -- 3.9 Final remarks -- References -- 4 Importance sampling Monte Carlo methods -- 4.1 Introduction -- 4.2 The simplest case: single spin-flip sampling for the simple Ising model -- 4.2.1 Algorithm -- 4.2.2 Boundary conditions -- 4.2.3 Finite size effects -- 4.2.4 Finite sampling time effects -- 4.2.5 Critical relaxation -- 4.3 Other discrete variable models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.1 Ising models with competing interactions -- 4.3.2 q-state Potts models -- 4.3.3 Baxter and Baxter-Wu models -- 4.3.4. Clock models -- 4.3.5 Ising spin glass models -- 4.3.6 Complex fluid models -- 4.4 Spin-exchange sampling -- 4.4.1 Constant magnetization simulations -- 4.4.2 Phase separation -- 4.4.3 Diffusion -- 4.4.4 Hydrodynamic slowing down -- 4.5 Microcanonical methods -- 4.5.1 Demon algorithm -- 4.5.2 Dynamic ensemble -- 4.5.3 Q2R -- 4.6 General remarks, choice of ensemble -- 4.7 Staticsand dynamics of polymer models on lattices -- 4.7.1 Background -- 4.7.2 Fixed length bond methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics as well as in related fields, for example polymer science and lattice gauge theory. After briefly recalling essential background in statistical mechanics and probability theory, the authors give a succinct overview of simple sampling methods. The next several chapters develop the importance sampling method. The concepts behind the various simulation algorithms are explained. The fact that simulations deal with small systems is emphasized. Othe.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Monte Carlo method.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85087032</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127573</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Monte Carlo Method</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D009010</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Méthode de Monte-Carlo.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique statistique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte Carlo method</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Monte Carlo-methode.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Statistische mechanica.</subfield><subfield code="0">(NL-LeOCL)078675197</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Simulatie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MÉTODO DE MONTE CARLO.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MECÂNICA ESTATÍSTICA.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Binder, K.</subfield><subfield code="q">(Kurt),</subfield><subfield code="d">1944-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwmVvQMQChF6g4m6hqqQq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83197356</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Landau, David P.</subfield><subfield code="t">Guide to Monte Carlo simulations in statistical physics.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2000</subfield><subfield code="z">0521653142</subfield><subfield code="w">(DLC) 99038308</subfield><subfield code="w">(OCoLC)41871513</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=72816</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL143909</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">72816</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2591204</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2299977</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2617116</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm51036668 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:20Z |
institution | BVB |
isbn | 0511010265 9780511010262 0511033141 9780511033148 0511151225 9780511151224 9780521653145 0521653142 |
language | English |
oclc_num | 51036668 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 384 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Landau, David P. A guide to Monte Carlo simulations in statistical physics / David P. Landau, Kurt Binder. Monte Carlo simulations in statistical physics Cambridge ; New York : Cambridge University Press, 2000. 1 online resource (xiii, 384 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references and index. Print version record. Preface -- 1 Introduction -- 1.1 What is a Monte Carlo simulation -- 1.2 What problems can we solve with it? -- 1.3 What difficulties will we encounter? -- 1.3.1 Limited computer time and memory -- 1.3.2 Statistical and other errors -- 1.4 What strategy should we follw in approaching a problem? -- 1.5 How do simulations relate to theory and experiment? -- 2 Some necessary background -- 2.1 Thermodynamics and statistical mechanics: a quick reminder -- 2.1.1 Basic notions -- 2.1.2 Phase transitions -- 2.1.3 Ergodicity and broken symmetry. 2.1.4 Fluctuations and the Ginzburg criterion -- 2.1.5 A standard exercise: the ferromagnetic Ising model -- 2.2 Probabilty theory -- 2.2.1 Basic notions -- 2.2.2 Special probability distributions and the central limit theorem -- 2.2.3 Statistical errors -- 2.2.4 Markov chains and master equations -- 2.2.5 The 'art' of random number generation -- 2.3 Non-equilibrium and dynamics: some introductory comments -- 2.3.1 Physical applications of master equations -- 2.3.2 Conservation laws and their consequences -- 2.3.3 Critical slowing down at phase transitions -- 2.3.4 Transport coefficients. 2.3.5 Concluding comments: why bother about dynamics whendoing Monte Carlo for statics? -- References -- 3 Simple sampling Monte Carlo methods -- 3.1 Introduction -- 3.2 Comparisons of methods for numerical integration of given functions -- 3.2.1 Simple methods -- 3.2.2 Intelligent methods -- 3.3 Boundary value problems -- 3.4 Simulation of radioactive decay -- 3.5 Simulation of transport properties -- 3.5.1 Neutron support -- 3.5.2 Fluid flow -- 3.6 The percolation problem -- 3.61 Site percolation -- 3.6.2 Cluster counting: the Hoshen-Kopelman alogorithm -- 3.6.3 Other percolation models. 3.7 Finding the groundstate of a Hamiltonian -- 3.8 Generation of 'random' walks -- 3.8.1 Introduction -- 3.8.2 Random walks -- 3.8.3 Self-avoiding walks -- 3.8.4 Growing walks and other models -- 3.9 Final remarks -- References -- 4 Importance sampling Monte Carlo methods -- 4.1 Introduction -- 4.2 The simplest case: single spin-flip sampling for the simple Ising model -- 4.2.1 Algorithm -- 4.2.2 Boundary conditions -- 4.2.3 Finite size effects -- 4.2.4 Finite sampling time effects -- 4.2.5 Critical relaxation -- 4.3 Other discrete variable models. 4.3.1 Ising models with competing interactions -- 4.3.2 q-state Potts models -- 4.3.3 Baxter and Baxter-Wu models -- 4.3.4. Clock models -- 4.3.5 Ising spin glass models -- 4.3.6 Complex fluid models -- 4.4 Spin-exchange sampling -- 4.4.1 Constant magnetization simulations -- 4.4.2 Phase separation -- 4.4.3 Diffusion -- 4.4.4 Hydrodynamic slowing down -- 4.5 Microcanonical methods -- 4.5.1 Demon algorithm -- 4.5.2 Dynamic ensemble -- 4.5.3 Q2R -- 4.6 General remarks, choice of ensemble -- 4.7 Staticsand dynamics of polymer models on lattices -- 4.7.1 Background -- 4.7.2 Fixed length bond methods. This book deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics as well as in related fields, for example polymer science and lattice gauge theory. After briefly recalling essential background in statistical mechanics and probability theory, the authors give a succinct overview of simple sampling methods. The next several chapters develop the importance sampling method. The concepts behind the various simulation algorithms are explained. The fact that simulations deal with small systems is emphasized. Othe. Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Statistical physics. http://id.loc.gov/authorities/subjects/sh85127573 Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Physique statistique. SCIENCE Physics General. bisacsh Monte Carlo method fast Statistical physics fast Monte Carlo-methode. gtt Statistische mechanica. (NL-LeOCL)078675197 gtt Simulatie. gtt MÉTODO DE MONTE CARLO. larpcal MECÂNICA ESTATÍSTICA. larpcal Binder, K. (Kurt), 1944- https://id.oclc.org/worldcat/entity/E39PBJwmVvQMQChF6g4m6hqqQq http://id.loc.gov/authorities/names/n83197356 Print version: Landau, David P. Guide to Monte Carlo simulations in statistical physics. Cambridge ; New York : Cambridge University Press, 2000 0521653142 (DLC) 99038308 (OCoLC)41871513 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=72816 Volltext |
spellingShingle | Landau, David P. A guide to Monte Carlo simulations in statistical physics / Preface -- 1 Introduction -- 1.1 What is a Monte Carlo simulation -- 1.2 What problems can we solve with it? -- 1.3 What difficulties will we encounter? -- 1.3.1 Limited computer time and memory -- 1.3.2 Statistical and other errors -- 1.4 What strategy should we follw in approaching a problem? -- 1.5 How do simulations relate to theory and experiment? -- 2 Some necessary background -- 2.1 Thermodynamics and statistical mechanics: a quick reminder -- 2.1.1 Basic notions -- 2.1.2 Phase transitions -- 2.1.3 Ergodicity and broken symmetry. 2.1.4 Fluctuations and the Ginzburg criterion -- 2.1.5 A standard exercise: the ferromagnetic Ising model -- 2.2 Probabilty theory -- 2.2.1 Basic notions -- 2.2.2 Special probability distributions and the central limit theorem -- 2.2.3 Statistical errors -- 2.2.4 Markov chains and master equations -- 2.2.5 The 'art' of random number generation -- 2.3 Non-equilibrium and dynamics: some introductory comments -- 2.3.1 Physical applications of master equations -- 2.3.2 Conservation laws and their consequences -- 2.3.3 Critical slowing down at phase transitions -- 2.3.4 Transport coefficients. 2.3.5 Concluding comments: why bother about dynamics whendoing Monte Carlo for statics? -- References -- 3 Simple sampling Monte Carlo methods -- 3.1 Introduction -- 3.2 Comparisons of methods for numerical integration of given functions -- 3.2.1 Simple methods -- 3.2.2 Intelligent methods -- 3.3 Boundary value problems -- 3.4 Simulation of radioactive decay -- 3.5 Simulation of transport properties -- 3.5.1 Neutron support -- 3.5.2 Fluid flow -- 3.6 The percolation problem -- 3.61 Site percolation -- 3.6.2 Cluster counting: the Hoshen-Kopelman alogorithm -- 3.6.3 Other percolation models. 3.7 Finding the groundstate of a Hamiltonian -- 3.8 Generation of 'random' walks -- 3.8.1 Introduction -- 3.8.2 Random walks -- 3.8.3 Self-avoiding walks -- 3.8.4 Growing walks and other models -- 3.9 Final remarks -- References -- 4 Importance sampling Monte Carlo methods -- 4.1 Introduction -- 4.2 The simplest case: single spin-flip sampling for the simple Ising model -- 4.2.1 Algorithm -- 4.2.2 Boundary conditions -- 4.2.3 Finite size effects -- 4.2.4 Finite sampling time effects -- 4.2.5 Critical relaxation -- 4.3 Other discrete variable models. 4.3.1 Ising models with competing interactions -- 4.3.2 q-state Potts models -- 4.3.3 Baxter and Baxter-Wu models -- 4.3.4. Clock models -- 4.3.5 Ising spin glass models -- 4.3.6 Complex fluid models -- 4.4 Spin-exchange sampling -- 4.4.1 Constant magnetization simulations -- 4.4.2 Phase separation -- 4.4.3 Diffusion -- 4.4.4 Hydrodynamic slowing down -- 4.5 Microcanonical methods -- 4.5.1 Demon algorithm -- 4.5.2 Dynamic ensemble -- 4.5.3 Q2R -- 4.6 General remarks, choice of ensemble -- 4.7 Staticsand dynamics of polymer models on lattices -- 4.7.1 Background -- 4.7.2 Fixed length bond methods. Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Statistical physics. http://id.loc.gov/authorities/subjects/sh85127573 Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Physique statistique. SCIENCE Physics General. bisacsh Monte Carlo method fast Statistical physics fast Monte Carlo-methode. gtt Statistische mechanica. (NL-LeOCL)078675197 gtt Simulatie. gtt MÉTODO DE MONTE CARLO. larpcal MECÂNICA ESTATÍSTICA. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85087032 http://id.loc.gov/authorities/subjects/sh85127573 https://id.nlm.nih.gov/mesh/D009010 (NL-LeOCL)078675197 |
title | A guide to Monte Carlo simulations in statistical physics / |
title_alt | Monte Carlo simulations in statistical physics |
title_auth | A guide to Monte Carlo simulations in statistical physics / |
title_exact_search | A guide to Monte Carlo simulations in statistical physics / |
title_full | A guide to Monte Carlo simulations in statistical physics / David P. Landau, Kurt Binder. |
title_fullStr | A guide to Monte Carlo simulations in statistical physics / David P. Landau, Kurt Binder. |
title_full_unstemmed | A guide to Monte Carlo simulations in statistical physics / David P. Landau, Kurt Binder. |
title_short | A guide to Monte Carlo simulations in statistical physics / |
title_sort | guide to monte carlo simulations in statistical physics |
topic | Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Statistical physics. http://id.loc.gov/authorities/subjects/sh85127573 Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Physique statistique. SCIENCE Physics General. bisacsh Monte Carlo method fast Statistical physics fast Monte Carlo-methode. gtt Statistische mechanica. (NL-LeOCL)078675197 gtt Simulatie. gtt MÉTODO DE MONTE CARLO. larpcal MECÂNICA ESTATÍSTICA. larpcal |
topic_facet | Monte Carlo method. Statistical physics. Monte Carlo Method Méthode de Monte-Carlo. Physique statistique. SCIENCE Physics General. Monte Carlo method Statistical physics Monte Carlo-methode. Statistische mechanica. Simulatie. MÉTODO DE MONTE CARLO. MECÂNICA ESTATÍSTICA. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=72816 |
work_keys_str_mv | AT landaudavidp aguidetomontecarlosimulationsinstatisticalphysics AT binderk aguidetomontecarlosimulationsinstatisticalphysics AT landaudavidp montecarlosimulationsinstatisticalphysics AT binderk montecarlosimulationsinstatisticalphysics AT landaudavidp guidetomontecarlosimulationsinstatisticalphysics AT binderk guidetomontecarlosimulationsinstatisticalphysics |