Solving problems in environmental engineering and geosciences with artificial neural networks /:
Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©1995.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants and aquifer restoration. ANNs also provide a faster method of developing systems that classify seismic events as being earthquakes or underground explosions.Farid Dowla and Leah Rogers have developed a number of ANN applications for researchers and students in hydrology and seismology. This book, complete with exercises and ANN algorithms, illustrates how ANNs can be used in solving problems in environmental engineering and the geosciences, and provides the necessary tools to get started using these elegant and efficient new techniques.Following the development of four primary ANN algorithms (backpropagation, self-organizing, radial basis functions, and hopfield networks), and a discussion of important issues in ANN formulation (generalization properties, computer generation of training sets, causes of slow training, feature extraction and preprocessing, and performance evaluation), readers are guided through a series of straightforward yet complex illustrative problems. These include groundwater remediation management, seismic discrimination between earthquakes and underground explosions, automated monitoring for acoustic and seismic sensor data, estimation of seismic sources, geospatial estimation, lithologic classification from geophysical logging, earthquake forecasting, and climate change. Each chapter contains detailed exercises often drawn from field data that use one or more of the four primary ANN algorithms presented. |
Beschreibung: | 1 online resource (x, 239 pages) : illustrations, maps |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 058534101X 9780585341019 0262271915 9780262271912 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm47009502 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 010202s1995 mauab ob 001 0 eng d | ||
010 | |z 95038347 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d IEEEE |d OCLCF |d NLGGC |d OCLCQ |d SLY |d OCLCQ |d NJR |d OCLCQ |d VTS |d MERER |d AGLDB |d OCLCQ |d REC |d STF |d M8D |d OCLCO |d OL$ |d OCLCA |d AJS |d OCLCO |d UKUOP |d OCLCO |d OCLCQ |d INARC |d OCLCO |d NUI | ||
019 | |a 827013500 |a 880192846 |a 1392110174 | ||
020 | |a 058534101X |q (electronic bk.) | ||
020 | |a 9780585341019 |q (electronic bk.) | ||
020 | |a 0262271915 |q (electronic bk.) | ||
020 | |a 9780262271912 |q (electronic bk.) | ||
020 | |z 0262041480 | ||
020 | |z 9780262041485 | ||
035 | |a (OCoLC)47009502 |z (OCoLC)827013500 |z (OCoLC)880192846 |z (OCoLC)1392110174 | ||
050 | 4 | |a QE48.8 |b .D68 1995eb | |
070 | |a QE48.8.D68 |b 1995 | ||
072 | 7 | |a SCI |x 019000 |2 bisacsh | |
072 | 7 | |a SCI |x 032000 |2 bisacsh | |
072 | 0 | |a X200 | |
082 | 7 | |a 550/.285 |2 20 | |
084 | |a P3-39 |2 clc | ||
084 | |a P5-39 |2 clc | ||
084 | |a X5-39 |2 clc | ||
084 | |a SK 950 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Dowla, Farid U. | |
245 | 1 | 0 | |a Solving problems in environmental engineering and geosciences with artificial neural networks / |c Farid U. Dowla and Leah L. Rogers. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©1995. | ||
300 | |a 1 online resource (x, 239 pages) : |b illustrations, maps | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants and aquifer restoration. ANNs also provide a faster method of developing systems that classify seismic events as being earthquakes or underground explosions.Farid Dowla and Leah Rogers have developed a number of ANN applications for researchers and students in hydrology and seismology. This book, complete with exercises and ANN algorithms, illustrates how ANNs can be used in solving problems in environmental engineering and the geosciences, and provides the necessary tools to get started using these elegant and efficient new techniques.Following the development of four primary ANN algorithms (backpropagation, self-organizing, radial basis functions, and hopfield networks), and a discussion of important issues in ANN formulation (generalization properties, computer generation of training sets, causes of slow training, feature extraction and preprocessing, and performance evaluation), readers are guided through a series of straightforward yet complex illustrative problems. These include groundwater remediation management, seismic discrimination between earthquakes and underground explosions, automated monitoring for acoustic and seismic sensor data, estimation of seismic sources, geospatial estimation, lithologic classification from geophysical logging, earthquake forecasting, and climate change. Each chapter contains detailed exercises often drawn from field data that use one or more of the four primary ANN algorithms presented. | ||
650 | 0 | |a Earth sciences |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh2015003033 | |
650 | 0 | |a Environmental engineering |x Data processing. | |
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 6 | |a Technique de l'environnement |x Informatique. | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 7 | |a SCIENCE |x Earth Sciences |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Geophysics. |2 bisacsh | |
650 | 0 | 7 | |a Earth sciences |x Data processing. |2 cct |
650 | 0 | 7 | |a Environmental engineering |x Data processing. |2 cct |
650 | 0 | 7 | |a Neural networks (Computer science) |2 cct |
650 | 7 | |a Earth sciences |x Data processing |2 fast | |
650 | 7 | |a Environmental engineering |x Data processing |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Geowissenschaften |2 gnd | |
650 | 7 | |a Neuronales Netz |2 gnd |0 http://d-nb.info/gnd/4226127-2 | |
650 | 7 | |a Umwelttechnik |2 gnd |0 http://d-nb.info/gnd/4061650-2 | |
655 | 4 | |a 103. | |
700 | 1 | |a Rogers, Leah L. | |
776 | 0 | 8 | |i Print version: |a Dowla, Farid U. |t Solving problems in environmental engineering and geosciences with artificial neural networks. |d Cambridge, Mass. : MIT Press, ©1995 |z 0262041480 |w (DLC) 95038347 |w (OCoLC)33010070 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=48616 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBSCOhost |b EBSC |n 48616 | ||
938 | |a YBP Library Services |b YANK |n 2323400 | ||
938 | |a YBP Library Services |b YANK |n 10832825 | ||
938 | |a Internet Archive |b INAR |n solvingproblemsi0000dowl | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm47009502 |
---|---|
_version_ | 1816881595045380097 |
adam_text | |
any_adam_object | |
author | Dowla, Farid U. |
author2 | Rogers, Leah L. |
author2_role | |
author2_variant | l l r ll llr |
author_facet | Dowla, Farid U. Rogers, Leah L. |
author_role | |
author_sort | Dowla, Farid U. |
author_variant | f u d fu fud |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QE48 |
callnumber-raw | QE48.8 .D68 1995eb |
callnumber-search | QE48.8 .D68 1995eb |
callnumber-sort | QE 248.8 D68 41995EB |
callnumber-subject | QE - Geology |
classification_rvk | SK 950 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)47009502 |
dewey-full | 550/.285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 550 - Earth sciences |
dewey-raw | 550/.285 |
dewey-search | 550/.285 |
dewey-sort | 3550 3285 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05120cam a2200781 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm47009502 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">010202s1995 mauab ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 95038347 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">MERER</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCA</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKUOP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">827013500</subfield><subfield code="a">880192846</subfield><subfield code="a">1392110174</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">058534101X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585341019</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262271915</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262271912</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0262041480</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262041485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47009502</subfield><subfield code="z">(OCoLC)827013500</subfield><subfield code="z">(OCoLC)880192846</subfield><subfield code="z">(OCoLC)1392110174</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QE48.8</subfield><subfield code="b">.D68 1995eb</subfield></datafield><datafield tag="070" ind1=" " ind2=" "><subfield code="a">QE48.8.D68</subfield><subfield code="b">1995</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">032000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="0"><subfield code="a">X200</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">550/.285</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">P3-39</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">P5-39</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">X5-39</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dowla, Farid U.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving problems in environmental engineering and geosciences with artificial neural networks /</subfield><subfield code="c">Farid U. Dowla and Leah L. Rogers.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 239 pages) :</subfield><subfield code="b">illustrations, maps</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants and aquifer restoration. ANNs also provide a faster method of developing systems that classify seismic events as being earthquakes or underground explosions.Farid Dowla and Leah Rogers have developed a number of ANN applications for researchers and students in hydrology and seismology. This book, complete with exercises and ANN algorithms, illustrates how ANNs can be used in solving problems in environmental engineering and the geosciences, and provides the necessary tools to get started using these elegant and efficient new techniques.Following the development of four primary ANN algorithms (backpropagation, self-organizing, radial basis functions, and hopfield networks), and a discussion of important issues in ANN formulation (generalization properties, computer generation of training sets, causes of slow training, feature extraction and preprocessing, and performance evaluation), readers are guided through a series of straightforward yet complex illustrative problems. These include groundwater remediation management, seismic discrimination between earthquakes and underground explosions, automated monitoring for acoustic and seismic sensor data, estimation of seismic sources, geospatial estimation, lithologic classification from geophysical logging, earthquake forecasting, and climate change. Each chapter contains detailed exercises often drawn from field data that use one or more of the four primary ANN algorithms presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Earth sciences</subfield><subfield code="x">Data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2015003033</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Environmental engineering</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Technique de l'environnement</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Earth Sciences</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Geophysics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Earth sciences</subfield><subfield code="x">Data processing.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Environmental engineering</subfield><subfield code="x">Data processing.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Earth sciences</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Environmental engineering</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geowissenschaften</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4226127-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Umwelttechnik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4061650-2</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">103.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogers, Leah L.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dowla, Farid U.</subfield><subfield code="t">Solving problems in environmental engineering and geosciences with artificial neural networks.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©1995</subfield><subfield code="z">0262041480</subfield><subfield code="w">(DLC) 95038347</subfield><subfield code="w">(OCoLC)33010070</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=48616</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">48616</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2323400</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10832825</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">solvingproblemsi0000dowl</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | 103. |
genre_facet | 103. |
id | ZDB-4-EBA-ocm47009502 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:13Z |
institution | BVB |
isbn | 058534101X 9780585341019 0262271915 9780262271912 |
language | English |
oclc_num | 47009502 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 239 pages) : illustrations, maps |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | MIT Press, |
record_format | marc |
spelling | Dowla, Farid U. Solving problems in environmental engineering and geosciences with artificial neural networks / Farid U. Dowla and Leah L. Rogers. Cambridge, Mass. : MIT Press, ©1995. 1 online resource (x, 239 pages) : illustrations, maps text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants and aquifer restoration. ANNs also provide a faster method of developing systems that classify seismic events as being earthquakes or underground explosions.Farid Dowla and Leah Rogers have developed a number of ANN applications for researchers and students in hydrology and seismology. This book, complete with exercises and ANN algorithms, illustrates how ANNs can be used in solving problems in environmental engineering and the geosciences, and provides the necessary tools to get started using these elegant and efficient new techniques.Following the development of four primary ANN algorithms (backpropagation, self-organizing, radial basis functions, and hopfield networks), and a discussion of important issues in ANN formulation (generalization properties, computer generation of training sets, causes of slow training, feature extraction and preprocessing, and performance evaluation), readers are guided through a series of straightforward yet complex illustrative problems. These include groundwater remediation management, seismic discrimination between earthquakes and underground explosions, automated monitoring for acoustic and seismic sensor data, estimation of seismic sources, geospatial estimation, lithologic classification from geophysical logging, earthquake forecasting, and climate change. Each chapter contains detailed exercises often drawn from field data that use one or more of the four primary ANN algorithms presented. Earth sciences Data processing. http://id.loc.gov/authorities/subjects/sh2015003033 Environmental engineering Data processing. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Technique de l'environnement Informatique. Réseaux neuronaux (Informatique) SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh Earth sciences Data processing. cct Environmental engineering Data processing. cct Neural networks (Computer science) cct Earth sciences Data processing fast Environmental engineering Data processing fast Neural networks (Computer science) fast Geowissenschaften gnd Neuronales Netz gnd http://d-nb.info/gnd/4226127-2 Umwelttechnik gnd http://d-nb.info/gnd/4061650-2 103. Rogers, Leah L. Print version: Dowla, Farid U. Solving problems in environmental engineering and geosciences with artificial neural networks. Cambridge, Mass. : MIT Press, ©1995 0262041480 (DLC) 95038347 (OCoLC)33010070 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=48616 Volltext |
spellingShingle | Dowla, Farid U. Solving problems in environmental engineering and geosciences with artificial neural networks / Earth sciences Data processing. http://id.loc.gov/authorities/subjects/sh2015003033 Environmental engineering Data processing. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Technique de l'environnement Informatique. Réseaux neuronaux (Informatique) SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh Earth sciences Data processing. cct Environmental engineering Data processing. cct Neural networks (Computer science) cct Earth sciences Data processing fast Environmental engineering Data processing fast Neural networks (Computer science) fast Geowissenschaften gnd Neuronales Netz gnd http://d-nb.info/gnd/4226127-2 Umwelttechnik gnd http://d-nb.info/gnd/4061650-2 |
subject_GND | http://id.loc.gov/authorities/subjects/sh2015003033 http://id.loc.gov/authorities/subjects/sh90001937 http://d-nb.info/gnd/4226127-2 http://d-nb.info/gnd/4061650-2 |
title | Solving problems in environmental engineering and geosciences with artificial neural networks / |
title_auth | Solving problems in environmental engineering and geosciences with artificial neural networks / |
title_exact_search | Solving problems in environmental engineering and geosciences with artificial neural networks / |
title_full | Solving problems in environmental engineering and geosciences with artificial neural networks / Farid U. Dowla and Leah L. Rogers. |
title_fullStr | Solving problems in environmental engineering and geosciences with artificial neural networks / Farid U. Dowla and Leah L. Rogers. |
title_full_unstemmed | Solving problems in environmental engineering and geosciences with artificial neural networks / Farid U. Dowla and Leah L. Rogers. |
title_short | Solving problems in environmental engineering and geosciences with artificial neural networks / |
title_sort | solving problems in environmental engineering and geosciences with artificial neural networks |
topic | Earth sciences Data processing. http://id.loc.gov/authorities/subjects/sh2015003033 Environmental engineering Data processing. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Technique de l'environnement Informatique. Réseaux neuronaux (Informatique) SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh Earth sciences Data processing. cct Environmental engineering Data processing. cct Neural networks (Computer science) cct Earth sciences Data processing fast Environmental engineering Data processing fast Neural networks (Computer science) fast Geowissenschaften gnd Neuronales Netz gnd http://d-nb.info/gnd/4226127-2 Umwelttechnik gnd http://d-nb.info/gnd/4061650-2 |
topic_facet | Earth sciences Data processing. Environmental engineering Data processing. Neural networks (Computer science) Technique de l'environnement Informatique. Réseaux neuronaux (Informatique) SCIENCE Earth Sciences General. SCIENCE Physics Geophysics. Earth sciences Data processing Environmental engineering Data processing Geowissenschaften Neuronales Netz Umwelttechnik 103. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=48616 |
work_keys_str_mv | AT dowlafaridu solvingproblemsinenvironmentalengineeringandgeoscienceswithartificialneuralnetworks AT rogersleahl solvingproblemsinenvironmentalengineeringandgeoscienceswithartificialneuralnetworks |