Russell's hidden substitutional theory /:
Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Oxford University Press,
1998.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables. In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions |
Beschreibung: | 1 online resource (xi, 337 pages) |
Bibliographie: | Includes bibliographical references (pages 325-332) and index. |
ISBN: | 0585329060 9780585329062 0195353722 9780195353723 1280470291 9781280470295 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm45842545 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 010106s1998 nyu ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d OCLCG |d OCLCQ |d TUU |d OCLCQ |d TNF |d OCLCQ |d QE2 |d IDEBK |d MERUC |d CCO |d E7B |d YDXCP |d MT4IT |d DKDLA |d QT5 |d MHW |d OCLCO |d OCLCQ |d T2N |d DEBSZ |d NHA |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d OCL |d AZK |d OCLCQ |d MWM |d COCUF |d AGLDB |d MOR |d PIFBR |d OTZ |d OCLCQ |d SAV |d OCLCQ |d QT7 |d OCLCO |d U3W |d LUE |d STF |d WRM |d OCLCA |d OCLCQ |d VTS |d CEF |d NRAMU |d OCLCQ |d OCLCO |d INT |d REC |d VT2 |d TOF |d OCLCQ |d OCLCO |d LHU |d FVL |d WYU |d YOU |d CANPU |d TKN |d CNTRU |d M8D |d UKCRE |d BOL |d TUHNV |d OCLCO |d OCLCQ |d INARC |d YDX |d OCLCO |d OCLCL | ||
019 | |a 191924502 |a 191952985 |a 252567601 |a 455965995 |a 474894264 |a 475354068 |a 533107459 |a 559913921 |a 613365396 |a 646737718 |a 722386745 |a 756880727 |a 814454568 |a 819509904 |a 821690606 |a 888646036 |a 961674250 |a 961681731 |a 962603659 |a 962718271 |a 988463851 |a 991908905 |a 994849441 |a 1035656173 |a 1037726722 |a 1038690406 |a 1045514092 |a 1059788023 |a 1077852268 |a 1099561079 |a 1114396802 |a 1153489363 |a 1243589518 |a 1252729894 | ||
020 | |a 0585329060 |q (electronic bk.) | ||
020 | |a 9780585329062 |q (electronic bk.) | ||
020 | |a 0195353722 | ||
020 | |a 9780195353723 | ||
020 | |a 1280470291 | ||
020 | |a 9781280470295 | ||
020 | |z 9780195116830 |q (alk. paper) | ||
020 | |z 0195116836 |q (alk. paper) | ||
027 | |a MYILIB_CUp | ||
035 | |a (OCoLC)45842545 |z (OCoLC)191924502 |z (OCoLC)191952985 |z (OCoLC)252567601 |z (OCoLC)455965995 |z (OCoLC)474894264 |z (OCoLC)475354068 |z (OCoLC)533107459 |z (OCoLC)559913921 |z (OCoLC)613365396 |z (OCoLC)646737718 |z (OCoLC)722386745 |z (OCoLC)756880727 |z (OCoLC)814454568 |z (OCoLC)819509904 |z (OCoLC)821690606 |z (OCoLC)888646036 |z (OCoLC)961674250 |z (OCoLC)961681731 |z (OCoLC)962603659 |z (OCoLC)962718271 |z (OCoLC)988463851 |z (OCoLC)991908905 |z (OCoLC)994849441 |z (OCoLC)1035656173 |z (OCoLC)1037726722 |z (OCoLC)1038690406 |z (OCoLC)1045514092 |z (OCoLC)1059788023 |z (OCoLC)1077852268 |z (OCoLC)1099561079 |z (OCoLC)1114396802 |z (OCoLC)1153489363 |z (OCoLC)1243589518 |z (OCoLC)1252729894 | ||
050 | 4 | |a B1649.R94 |b L36 1998eb | |
055 | 1 | 3 | |a B1649.R94 |b L36 1998eb |
072 | 7 | |a PHI |x 011000 |2 bisacsh | |
072 | 7 | |a PBB |2 bicssc | |
082 | 7 | |a 160/.92 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Landini, Gregory. |0 http://id.loc.gov/authorities/names/n85247086 | |
245 | 1 | 0 | |a Russell's hidden substitutional theory / |c Gregory Landini. |
260 | |a New York : |b Oxford University Press, |c 1998. | ||
300 | |a 1 online resource (xi, 337 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
340 | |g polychrome. |2 rdacc |0 http://rdaregistry.info/termList/RDAColourContent/1003 | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 325-332) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables. | ||
520 | |a In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions | ||
505 | 0 | |a The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle. | |
600 | 1 | 0 | |a Russell, Bertrand, |d 1872-1970. |
600 | 1 | 7 | |a Russell, Bertrand, |d 1872-1970 |2 fast |1 https://id.oclc.org/worldcat/entity/E39PBJdWHHp4wmT6Yh4RkthmBP |
650 | 0 | |a Proposition (Logic) |x History |y 20th century. | |
650 | 0 | |a Logic, Symbolic and mathematical |x History |y 20th century. | |
650 | 6 | |a Proposition (Logique) |x Histoire |y 20e siècle. | |
650 | 6 | |a Logique symbolique et mathématique |x Histoire |y 20e siècle. | |
650 | 7 | |a PHILOSOPHY |x Logic. |2 bisacsh | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Proposition (Logic) |2 fast | |
650 | 1 | 7 | |a Propositielogica. |0 (NL-LeOCL)078637651 |2 gtt |
650 | 1 | 7 | |a Wiskunde. |2 gtt |
648 | 7 | |a 1900-1999 |2 fast | |
655 | 7 | |a History |2 fast | |
758 | |i has work: |a Russell's hidden substitutional theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGbW9qHF7mpvcqD9f8CQmd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Landini, Gregory. |t Russell's hidden substitutional theory. |d New York : Oxford University Press, 1998 |z 0195116836 |w (DLC) 97022750 |w (OCoLC)37246630 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=23531 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a YBP Library Services |b YANK |n 20447265 | ||
938 | |a Internet Archive |b INAR |n russellshiddensu0000land | ||
938 | |a ebrary |b EBRY |n ebr10087533 | ||
938 | |a EBSCOhost |b EBSC |n 23531 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 47029 | ||
938 | |a YBP Library Services |b YANK |n 2769375 | ||
938 | |a YBP Library Services |b YANK |n 7119427 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm45842545 |
---|---|
_version_ | 1816881592994365440 |
adam_text | |
any_adam_object | |
author | Landini, Gregory |
author_GND | http://id.loc.gov/authorities/names/n85247086 |
author_facet | Landini, Gregory |
author_role | |
author_sort | Landini, Gregory |
author_variant | g l gl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | B - Philosophy, Psychology, Religion |
callnumber-label | B1649 |
callnumber-raw | B1649.R94 L36 1998eb |
callnumber-search | B1649.R94 L36 1998eb |
callnumber-sort | B 41649 R94 L36 41998EB |
callnumber-subject | B - Philosophy |
collection | ZDB-4-EBA |
contents | The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle. |
ctrlnum | (OCoLC)45842545 |
dewey-full | 160/.92 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160/.92 |
dewey-search | 160/.92 |
dewey-sort | 3160 292 |
dewey-tens | 160 - Philosophical logic |
discipline | Philosophie |
era | 1900-1999 fast |
era_facet | 1900-1999 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06843cam a2200781 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm45842545 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">010106s1998 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QE2</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MT4IT</subfield><subfield code="d">DKDLA</subfield><subfield code="d">QT5</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">T2N</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">NHA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MWM</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SAV</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QT7</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">LUE</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">TOF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LHU</subfield><subfield code="d">FVL</subfield><subfield code="d">WYU</subfield><subfield code="d">YOU</subfield><subfield code="d">CANPU</subfield><subfield code="d">TKN</subfield><subfield code="d">CNTRU</subfield><subfield code="d">M8D</subfield><subfield code="d">UKCRE</subfield><subfield code="d">BOL</subfield><subfield code="d">TUHNV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">191924502</subfield><subfield code="a">191952985</subfield><subfield code="a">252567601</subfield><subfield code="a">455965995</subfield><subfield code="a">474894264</subfield><subfield code="a">475354068</subfield><subfield code="a">533107459</subfield><subfield code="a">559913921</subfield><subfield code="a">613365396</subfield><subfield code="a">646737718</subfield><subfield code="a">722386745</subfield><subfield code="a">756880727</subfield><subfield code="a">814454568</subfield><subfield code="a">819509904</subfield><subfield code="a">821690606</subfield><subfield code="a">888646036</subfield><subfield code="a">961674250</subfield><subfield code="a">961681731</subfield><subfield code="a">962603659</subfield><subfield code="a">962718271</subfield><subfield code="a">988463851</subfield><subfield code="a">991908905</subfield><subfield code="a">994849441</subfield><subfield code="a">1035656173</subfield><subfield code="a">1037726722</subfield><subfield code="a">1038690406</subfield><subfield code="a">1045514092</subfield><subfield code="a">1059788023</subfield><subfield code="a">1077852268</subfield><subfield code="a">1099561079</subfield><subfield code="a">1114396802</subfield><subfield code="a">1153489363</subfield><subfield code="a">1243589518</subfield><subfield code="a">1252729894</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585329060</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585329062</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195353722</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780195353723</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280470291</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280470295</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780195116830</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0195116836</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="027" ind1=" " ind2=" "><subfield code="a">MYILIB_CUp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45842545</subfield><subfield code="z">(OCoLC)191924502</subfield><subfield code="z">(OCoLC)191952985</subfield><subfield code="z">(OCoLC)252567601</subfield><subfield code="z">(OCoLC)455965995</subfield><subfield code="z">(OCoLC)474894264</subfield><subfield code="z">(OCoLC)475354068</subfield><subfield code="z">(OCoLC)533107459</subfield><subfield code="z">(OCoLC)559913921</subfield><subfield code="z">(OCoLC)613365396</subfield><subfield code="z">(OCoLC)646737718</subfield><subfield code="z">(OCoLC)722386745</subfield><subfield code="z">(OCoLC)756880727</subfield><subfield code="z">(OCoLC)814454568</subfield><subfield code="z">(OCoLC)819509904</subfield><subfield code="z">(OCoLC)821690606</subfield><subfield code="z">(OCoLC)888646036</subfield><subfield code="z">(OCoLC)961674250</subfield><subfield code="z">(OCoLC)961681731</subfield><subfield code="z">(OCoLC)962603659</subfield><subfield code="z">(OCoLC)962718271</subfield><subfield code="z">(OCoLC)988463851</subfield><subfield code="z">(OCoLC)991908905</subfield><subfield code="z">(OCoLC)994849441</subfield><subfield code="z">(OCoLC)1035656173</subfield><subfield code="z">(OCoLC)1037726722</subfield><subfield code="z">(OCoLC)1038690406</subfield><subfield code="z">(OCoLC)1045514092</subfield><subfield code="z">(OCoLC)1059788023</subfield><subfield code="z">(OCoLC)1077852268</subfield><subfield code="z">(OCoLC)1099561079</subfield><subfield code="z">(OCoLC)1114396802</subfield><subfield code="z">(OCoLC)1153489363</subfield><subfield code="z">(OCoLC)1243589518</subfield><subfield code="z">(OCoLC)1252729894</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">B1649.R94</subfield><subfield code="b">L36 1998eb</subfield></datafield><datafield tag="055" ind1="1" ind2="3"><subfield code="a">B1649.R94</subfield><subfield code="b">L36 1998eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHI</subfield><subfield code="x">011000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBB</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">160/.92</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landini, Gregory.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85247086</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Russell's hidden substitutional theory /</subfield><subfield code="c">Gregory Landini.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">1998.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 337 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="340" ind1=" " ind2=" "><subfield code="g">polychrome.</subfield><subfield code="2">rdacc</subfield><subfield code="0">http://rdaregistry.info/termList/RDAColourContent/1003</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 325-332) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle.</subfield></datafield><datafield tag="600" ind1="1" ind2="0"><subfield code="a">Russell, Bertrand,</subfield><subfield code="d">1872-1970.</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Russell, Bertrand,</subfield><subfield code="d">1872-1970</subfield><subfield code="2">fast</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdWHHp4wmT6Yh4RkthmBP</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Proposition (Logic)</subfield><subfield code="x">History</subfield><subfield code="y">20th century.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="x">History</subfield><subfield code="y">20th century.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Proposition (Logique)</subfield><subfield code="x">Histoire</subfield><subfield code="y">20e siècle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique</subfield><subfield code="x">Histoire</subfield><subfield code="y">20e siècle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PHILOSOPHY</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proposition (Logic)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Propositielogica.</subfield><subfield code="0">(NL-LeOCL)078637651</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Wiskunde.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">1900-1999</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">History</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Russell's hidden substitutional theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGbW9qHF7mpvcqD9f8CQmd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Landini, Gregory.</subfield><subfield code="t">Russell's hidden substitutional theory.</subfield><subfield code="d">New York : Oxford University Press, 1998</subfield><subfield code="z">0195116836</subfield><subfield code="w">(DLC) 97022750</subfield><subfield code="w">(OCoLC)37246630</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=23531</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20447265</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">russellshiddensu0000land</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10087533</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">23531</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">47029</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2769375</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7119427</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | History fast |
genre_facet | History |
id | ZDB-4-EBA-ocm45842545 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:15:11Z |
institution | BVB |
isbn | 0585329060 9780585329062 0195353722 9780195353723 1280470291 9781280470295 |
language | English |
oclc_num | 45842545 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 337 pages) |
psigel | ZDB-4-EBA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Landini, Gregory. http://id.loc.gov/authorities/names/n85247086 Russell's hidden substitutional theory / Gregory Landini. New York : Oxford University Press, 1998. 1 online resource (xi, 337 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier polychrome. rdacc http://rdaregistry.info/termList/RDAColourContent/1003 data file Includes bibliographical references (pages 325-332) and index. Print version record. Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables. In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle. Russell, Bertrand, 1872-1970. Russell, Bertrand, 1872-1970 fast https://id.oclc.org/worldcat/entity/E39PBJdWHHp4wmT6Yh4RkthmBP Proposition (Logic) History 20th century. Logic, Symbolic and mathematical History 20th century. Proposition (Logique) Histoire 20e siècle. Logique symbolique et mathématique Histoire 20e siècle. PHILOSOPHY Logic. bisacsh Logic, Symbolic and mathematical fast Proposition (Logic) fast Propositielogica. (NL-LeOCL)078637651 gtt Wiskunde. gtt 1900-1999 fast History fast has work: Russell's hidden substitutional theory (Text) https://id.oclc.org/worldcat/entity/E39PCGbW9qHF7mpvcqD9f8CQmd https://id.oclc.org/worldcat/ontology/hasWork Print version: Landini, Gregory. Russell's hidden substitutional theory. New York : Oxford University Press, 1998 0195116836 (DLC) 97022750 (OCoLC)37246630 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=23531 Volltext |
spellingShingle | Landini, Gregory Russell's hidden substitutional theory / The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle. Russell, Bertrand, 1872-1970. Russell, Bertrand, 1872-1970 fast https://id.oclc.org/worldcat/entity/E39PBJdWHHp4wmT6Yh4RkthmBP Proposition (Logic) History 20th century. Logic, Symbolic and mathematical History 20th century. Proposition (Logique) Histoire 20e siècle. Logique symbolique et mathématique Histoire 20e siècle. PHILOSOPHY Logic. bisacsh Logic, Symbolic and mathematical fast Proposition (Logic) fast Propositielogica. (NL-LeOCL)078637651 gtt Wiskunde. gtt |
subject_GND | (NL-LeOCL)078637651 |
title | Russell's hidden substitutional theory / |
title_auth | Russell's hidden substitutional theory / |
title_exact_search | Russell's hidden substitutional theory / |
title_full | Russell's hidden substitutional theory / Gregory Landini. |
title_fullStr | Russell's hidden substitutional theory / Gregory Landini. |
title_full_unstemmed | Russell's hidden substitutional theory / Gregory Landini. |
title_short | Russell's hidden substitutional theory / |
title_sort | russell s hidden substitutional theory |
topic | Russell, Bertrand, 1872-1970. Russell, Bertrand, 1872-1970 fast https://id.oclc.org/worldcat/entity/E39PBJdWHHp4wmT6Yh4RkthmBP Proposition (Logic) History 20th century. Logic, Symbolic and mathematical History 20th century. Proposition (Logique) Histoire 20e siècle. Logique symbolique et mathématique Histoire 20e siècle. PHILOSOPHY Logic. bisacsh Logic, Symbolic and mathematical fast Proposition (Logic) fast Propositielogica. (NL-LeOCL)078637651 gtt Wiskunde. gtt |
topic_facet | Russell, Bertrand, 1872-1970. Russell, Bertrand, 1872-1970 Proposition (Logic) History 20th century. Logic, Symbolic and mathematical History 20th century. Proposition (Logique) Histoire 20e siècle. Logique symbolique et mathématique Histoire 20e siècle. PHILOSOPHY Logic. Logic, Symbolic and mathematical Proposition (Logic) Propositielogica. Wiskunde. History |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=23531 |
work_keys_str_mv | AT landinigregory russellshiddensubstitutionaltheory |