Nowcasting subjective well-being with Google Trends: A meta-learning approach
This paper applies Machine learning techniques to Google Trends data to provide real-time estimates of national average subjective well-being among 38 OECD countries since 2010. We make extensive usage of large custom micro databases to enhance the training of models on carefully pre-processed Googl...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Paris
OECD Publishing
2024
|
Series: | OECD Papers on Well-being and Inequalities
no.27 |
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | This paper applies Machine learning techniques to Google Trends data to provide real-time estimates of national average subjective well-being among 38 OECD countries since 2010. We make extensive usage of large custom micro databases to enhance the training of models on carefully pre-processed Google Trends data. We find that the best one-year-ahead prediction is obtained from a meta-learner that combines the predictions drawn from an Elastic Net with and without interactions, from a Gradient-Boosted Tree and from a Multi-layer Perceptron. As a result, across 38 countries over the 2010-2020 period, the out-of-sample prediction of average subjective well-being reaches an R2 of 0.830. |
Physical Description: | 1 Online-Ressource (27 Seiten) 21 x 28cm. |
Staff View
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-109256670 | ||
003 | DE-627-1 | ||
005 | 20241028115245.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241028s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/cbdfb5d9-en |2 doi | |
035 | |a (DE-627-1)109256670 | ||
035 | |a (DE-599)KEP109256670 | ||
035 | |a (FR-PaOEC)cbdfb5d9-en | ||
035 | |a (DE-627-1)109256670 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a C1 |2 jelc | ||
084 | |a I31 |2 jelc | ||
084 | |a D60 |2 jelc | ||
084 | |a C45 |2 jelc | ||
084 | |a C53 |2 jelc | ||
100 | 1 | |a Murtin, Fabrice |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Nowcasting subjective well-being with Google Trends |b A meta-learning approach |c Fabrice, Murtin and Max, Salomon-Ermel |
264 | 1 | |a Paris |b OECD Publishing |c 2024 | |
300 | |a 1 Online-Ressource (27 Seiten) |c 21 x 28cm. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Papers on Well-being and Inequalities |v no.27 | |
520 | |a This paper applies Machine learning techniques to Google Trends data to provide real-time estimates of national average subjective well-being among 38 OECD countries since 2010. We make extensive usage of large custom micro databases to enhance the training of models on carefully pre-processed Google Trends data. We find that the best one-year-ahead prediction is obtained from a meta-learner that combines the predictions drawn from an Elastic Net with and without interactions, from a Gradient-Boosted Tree and from a Multi-layer Perceptron. As a result, across 38 countries over the 2010-2020 period, the out-of-sample prediction of average subjective well-being reaches an R2 of 0.830. | ||
650 | 4 | |a Social Issues/Migration/Health | |
700 | 1 | |a Salomon-Ermel, Max |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-862 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/cbdfb5d9-en |m X:OECD |x Resolving-System |z lizenzpflichtig |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/cbdfb5d9-en |m X:OECD |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-13-SOC-ebook | ||
912 | |a ZDB-13-SOC | ||
951 | |a BO | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-13-SOC-109256670 |
---|---|
_version_ | 1826942494545281025 |
adam_text | |
any_adam_object | |
author | Murtin, Fabrice |
author2 | Salomon-Ermel, Max |
author2_role | ctb |
author2_variant | m s e mse |
author_facet | Murtin, Fabrice Salomon-Ermel, Max |
author_role | aut |
author_sort | Murtin, Fabrice |
author_variant | f m fm |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC-ebook ZDB-13-SOC |
ctrlnum | (DE-627-1)109256670 (DE-599)KEP109256670 (FR-PaOEC)cbdfb5d9-en |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02024nam a22004092 4500</leader><controlfield tag="001">ZDB-13-SOC-109256670</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241028115245.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241028s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/cbdfb5d9-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109256670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP109256670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)cbdfb5d9-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109256670</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C1</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">I31</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">D60</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C45</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C53</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murtin, Fabrice</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nowcasting subjective well-being with Google Trends</subfield><subfield code="b">A meta-learning approach</subfield><subfield code="c">Fabrice, Murtin and Max, Salomon-Ermel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (27 Seiten)</subfield><subfield code="c">21 x 28cm.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Papers on Well-being and Inequalities</subfield><subfield code="v">no.27</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper applies Machine learning techniques to Google Trends data to provide real-time estimates of national average subjective well-being among 38 OECD countries since 2010. We make extensive usage of large custom micro databases to enhance the training of models on carefully pre-processed Google Trends data. We find that the best one-year-ahead prediction is obtained from a meta-learner that combines the predictions drawn from an Elastic Net with and without interactions, from a Gradient-Boosted Tree and from a Multi-layer Perceptron. As a result, across 38 countries over the 2010-2020 period, the out-of-sample prediction of average subjective well-being reaches an R2 of 0.830.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Issues/Migration/Health</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salomon-Ermel, Max</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/cbdfb5d9-en</subfield><subfield code="m">X:OECD</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/cbdfb5d9-en</subfield><subfield code="m">X:OECD</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC-ebook</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-109256670 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:28:54Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (27 Seiten) 21 x 28cm. |
psigel | ZDB-13-SOC FWS_PDA_SOC ZDB-13-SOC-ebook ZDB-13-SOC |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Papers on Well-being and Inequalities |
spelling | Murtin, Fabrice VerfasserIn aut Nowcasting subjective well-being with Google Trends A meta-learning approach Fabrice, Murtin and Max, Salomon-Ermel Paris OECD Publishing 2024 1 Online-Ressource (27 Seiten) 21 x 28cm. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier OECD Papers on Well-being and Inequalities no.27 This paper applies Machine learning techniques to Google Trends data to provide real-time estimates of national average subjective well-being among 38 OECD countries since 2010. We make extensive usage of large custom micro databases to enhance the training of models on carefully pre-processed Google Trends data. We find that the best one-year-ahead prediction is obtained from a meta-learner that combines the predictions drawn from an Elastic Net with and without interactions, from a Gradient-Boosted Tree and from a Multi-layer Perceptron. As a result, across 38 countries over the 2010-2020 period, the out-of-sample prediction of average subjective well-being reaches an R2 of 0.830. Social Issues/Migration/Health Salomon-Ermel, Max MitwirkendeR ctb |
spellingShingle | Murtin, Fabrice Nowcasting subjective well-being with Google Trends A meta-learning approach Social Issues/Migration/Health |
title | Nowcasting subjective well-being with Google Trends A meta-learning approach |
title_auth | Nowcasting subjective well-being with Google Trends A meta-learning approach |
title_exact_search | Nowcasting subjective well-being with Google Trends A meta-learning approach |
title_full | Nowcasting subjective well-being with Google Trends A meta-learning approach Fabrice, Murtin and Max, Salomon-Ermel |
title_fullStr | Nowcasting subjective well-being with Google Trends A meta-learning approach Fabrice, Murtin and Max, Salomon-Ermel |
title_full_unstemmed | Nowcasting subjective well-being with Google Trends A meta-learning approach Fabrice, Murtin and Max, Salomon-Ermel |
title_short | Nowcasting subjective well-being with Google Trends |
title_sort | nowcasting subjective well being with google trends a meta learning approach |
title_sub | A meta-learning approach |
topic | Social Issues/Migration/Health |
topic_facet | Social Issues/Migration/Health |
work_keys_str_mv | AT murtinfabrice nowcastingsubjectivewellbeingwithgoogletrendsametalearningapproach AT salomonermelmax nowcastingsubjectivewellbeingwithgoogletrendsametalearningapproach |