VVER-1000 Coolant Transient Benchmark: Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation
In the recent past, the analysis of plant transients and the analysis of reactor core behaviour were performed separately. Usually, the core was represented by a point kinetics model to analyse plant transients and, for the core physics calculations, boundary conditions were imposed at the inlet and...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch Artikel |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2006
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | In the recent past, the analysis of plant transients and the analysis of reactor core behaviour were performed separately. Usually, the core was represented by a point kinetics model to analyse plant transients and, for the core physics calculations, boundary conditions were imposed at the inlet and the outlet of the core. In reality, these boundary conditions depend on the power generation in the core. To ensure a realistic description of the physical phenomena in an accident analysis, the application of coupled codes is required. In recent years code developers began coupling three-dimensional (3-D) neutron kinetics codes with advanced thermal-hydraulics system codes. Such complex computer codes allow modelling of the entire reactor system, including a 3-D neutronics core. When reactivity initiated accidents with an asymmetric neutron flux distribution in the core are analysed, only such coupled codes are capable of estimating the real feedback effects. These codes can perform safety analyses in order to replace the conservative estimations with best-estimate calculations. |
Beschreibung: | 1 Online-Ressource (95 Seiten) |
Internformat
MARC
LEADER | 00000caa a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-061306029 | ||
003 | DE-627-1 | ||
005 | 20241028114355.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210204s2006 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/oecd_papers-v6-art27-en |2 doi | |
035 | |a (DE-627-1)061306029 | ||
035 | |a (DE-599)KEP061306029 | ||
035 | |a (FR-PaOEC)oecd_papers-v6-art27-en | ||
035 | |a (DE-627-1)061306029 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Ivanov, Boyan D... |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a VVER-1000 Coolant Transient Benchmark |b Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation |c Boyan D., Ivanov and Kostadin N., Ivanov |
264 | 1 | |a Paris |b OECD Publishing |c 2006 | |
300 | |a 1 Online-Ressource (95 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the recent past, the analysis of plant transients and the analysis of reactor core behaviour were performed separately. Usually, the core was represented by a point kinetics model to analyse plant transients and, for the core physics calculations, boundary conditions were imposed at the inlet and the outlet of the core. In reality, these boundary conditions depend on the power generation in the core. To ensure a realistic description of the physical phenomena in an accident analysis, the application of coupled codes is required. In recent years code developers began coupling three-dimensional (3-D) neutron kinetics codes with advanced thermal-hydraulics system codes. Such complex computer codes allow modelling of the entire reactor system, including a 3-D neutronics core. When reactivity initiated accidents with an asymmetric neutron flux distribution in the core are analysed, only such coupled codes are capable of estimating the real feedback effects. These codes can perform safety analyses in order to replace the conservative estimations with best-estimate calculations. | ||
650 | 4 | |a Nuclear Energy | |
650 | 4 | |a Economics | |
700 | 1 | |a Ivanov, Kostadin N... |e MitwirkendeR |4 ctb | |
773 | 0 | 8 | |i Enthalten in |t OECD Papers |g Vol. 6, no. 7, p. 1-94 |
773 | 1 | 8 | |g volume:6 |g year:2006 |g number:7 |g pages:1-94 |
966 | 4 | 0 | |l DE-862 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/oecd_papers-v6-art27-en |m X:OECD |x Resolving-System |z lizenzpflichtig |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/oecd_papers-v6-art27-en |m X:OECD |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-13-SOC | ||
912 | |a ZDB-13-SOC-article | ||
912 | |a ZDB-13-SOC | ||
951 | |a AR | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-061306029 |
---|---|
_version_ | 1826942539669700608 |
adam_text | |
any_adam_object | |
author | Ivanov, Boyan D.. |
author2 | Ivanov, Kostadin N.. |
author2_role | ctb |
author2_variant | k n i kn kni |
author_facet | Ivanov, Boyan D.. Ivanov, Kostadin N.. |
author_role | aut |
author_sort | Ivanov, Boyan D.. |
author_variant | b d i bd bdi |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC ZDB-13-SOC-article |
ctrlnum | (DE-627-1)061306029 (DE-599)KEP061306029 (FR-PaOEC)oecd_papers-v6-art27-en |
discipline | Wirtschaftswissenschaften |
format | Electronic Article |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02476caa a22003852 4500</leader><controlfield tag="001">ZDB-13-SOC-061306029</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241028114355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210204s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/oecd_papers-v6-art27-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)061306029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP061306029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)oecd_papers-v6-art27-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)061306029</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanov, Boyan D...</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">VVER-1000 Coolant Transient Benchmark</subfield><subfield code="b">Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation</subfield><subfield code="c">Boyan D., Ivanov and Kostadin N., Ivanov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (95 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the recent past, the analysis of plant transients and the analysis of reactor core behaviour were performed separately. Usually, the core was represented by a point kinetics model to analyse plant transients and, for the core physics calculations, boundary conditions were imposed at the inlet and the outlet of the core. In reality, these boundary conditions depend on the power generation in the core. To ensure a realistic description of the physical phenomena in an accident analysis, the application of coupled codes is required. In recent years code developers began coupling three-dimensional (3-D) neutron kinetics codes with advanced thermal-hydraulics system codes. Such complex computer codes allow modelling of the entire reactor system, including a 3-D neutronics core. When reactivity initiated accidents with an asymmetric neutron flux distribution in the core are analysed, only such coupled codes are capable of estimating the real feedback effects. These codes can perform safety analyses in order to replace the conservative estimations with best-estimate calculations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ivanov, Kostadin N...</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">OECD Papers</subfield><subfield code="g">Vol. 6, no. 7, p. 1-94</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1-94</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/oecd_papers-v6-art27-en</subfield><subfield code="m">X:OECD</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/oecd_papers-v6-art27-en</subfield><subfield code="m">X:OECD</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC-article</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-061306029 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:29:37Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (95 Seiten) |
psigel | ZDB-13-SOC FWS_PDA_SOC ZDB-13-SOC ZDB-13-SOC-article |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | OECD Publishing |
record_format | marc |
spelling | Ivanov, Boyan D... VerfasserIn aut VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation Boyan D., Ivanov and Kostadin N., Ivanov Paris OECD Publishing 2006 1 Online-Ressource (95 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the recent past, the analysis of plant transients and the analysis of reactor core behaviour were performed separately. Usually, the core was represented by a point kinetics model to analyse plant transients and, for the core physics calculations, boundary conditions were imposed at the inlet and the outlet of the core. In reality, these boundary conditions depend on the power generation in the core. To ensure a realistic description of the physical phenomena in an accident analysis, the application of coupled codes is required. In recent years code developers began coupling three-dimensional (3-D) neutron kinetics codes with advanced thermal-hydraulics system codes. Such complex computer codes allow modelling of the entire reactor system, including a 3-D neutronics core. When reactivity initiated accidents with an asymmetric neutron flux distribution in the core are analysed, only such coupled codes are capable of estimating the real feedback effects. These codes can perform safety analyses in order to replace the conservative estimations with best-estimate calculations. Nuclear Energy Economics Ivanov, Kostadin N... MitwirkendeR ctb Enthalten in OECD Papers Vol. 6, no. 7, p. 1-94 volume:6 year:2006 number:7 pages:1-94 |
spellingShingle | Ivanov, Boyan D.. VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation Nuclear Energy Economics |
title | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation |
title_auth | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation |
title_exact_search | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation |
title_full | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation Boyan D., Ivanov and Kostadin N., Ivanov |
title_fullStr | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation Boyan D., Ivanov and Kostadin N., Ivanov |
title_full_unstemmed | VVER-1000 Coolant Transient Benchmark Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation Boyan D., Ivanov and Kostadin N., Ivanov |
title_short | VVER-1000 Coolant Transient Benchmark |
title_sort | vver 1000 coolant transient benchmark phase 1 v1000ct 1 vol 2 summary results of exercise 1 point kinetics plant simulation |
title_sub | Phase 1 (V1000CT-1) Vol. 2. Summary Results of Exercise 1: Point Kinetics Plant Simulation |
topic | Nuclear Energy Economics |
topic_facet | Nuclear Energy Economics |
work_keys_str_mv | AT ivanovboyand vver1000coolanttransientbenchmarkphase1v1000ct1vol2summaryresultsofexercise1pointkineticsplantsimulation AT ivanovkostadinn vver1000coolanttransientbenchmarkphase1v1000ct1vol2summaryresultsofexercise1pointkineticsplantsimulation |