Detection of the Industrial Business Cycle using SETAR Models:
In this paper, we consider a threshold time series model in order to take into account certain stylized facts of the business cycle, such as asymmetries in the phases of the cycle. Our aim is to point out some thresholds under (over) which a signal of turning point could be given in real-time. First...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch Artikel |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2006
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this paper, we consider a threshold time series model in order to take into account certain stylized facts of the business cycle, such as asymmetries in the phases of the cycle. Our aim is to point out some thresholds under (over) which a signal of turning point could be given in real-time. First, we introduce the various threshold models and we discuss both their statistical theoretical and empirical properties. Especially, we review the classical techniques to estimate the number of regimes, the threshold, the delay and the parameters of the model. Then we apply these models to the Euro-zone industrial production index to detect in real-time, trough a dynamic simulation approach, the dates of peaks and throughs in the business cycle. |
Beschreibung: | 1 Online-Ressource (19 p.) |
DOI: | 10.1787/jbcma-v2005-art9-en |
Internformat
MARC
LEADER | 00000caa a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-061301809 | ||
003 | DE-627-1 | ||
005 | 20231204121130.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210204s2006 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/jbcma-v2005-art9-en |2 doi | |
035 | |a (DE-627-1)061301809 | ||
035 | |a (DE-599)KEP061301809 | ||
035 | |a (FR-PaOEC)jbcma-v2005-art9-en | ||
035 | |a (EBP)061301809 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Ferrara, Laurent |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Detection of the Industrial Business Cycle using SETAR Models |c Laurent, Ferrara and Dominique, Guégan |
264 | 1 | |a Paris |b OECD Publishing |c 2006 | |
300 | |a 1 Online-Ressource (19 p.) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we consider a threshold time series model in order to take into account certain stylized facts of the business cycle, such as asymmetries in the phases of the cycle. Our aim is to point out some thresholds under (over) which a signal of turning point could be given in real-time. First, we introduce the various threshold models and we discuss both their statistical theoretical and empirical properties. Especially, we review the classical techniques to estimate the number of regimes, the threshold, the delay and the parameters of the model. Then we apply these models to the Euro-zone industrial production index to detect in real-time, trough a dynamic simulation approach, the dates of peaks and throughs in the business cycle. | ||
650 | 4 | |a Economics | |
700 | 1 | |a Guégan, Dominique |e MitwirkendeR |4 ctb | |
773 | 0 | 8 | |i Enthalten in |t Journal of Business Cycle Measurement and Analysis |g Vol. 2005, no. 3, p. 353-371 |
773 | 1 | 8 | |g volume:2005 |g year:2005 |g number:3 |g pages:353-371 |
856 | 4 | 0 | |l FWS01 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/jbcma-v2005-art9-en |3 Volltext |
912 | |a ZDB-13-SOC | ||
912 | |a ZDB-13-SOC-article | ||
912 | |a ZDB-13-SOC | ||
951 | |a AR | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-061301809 |
---|---|
_version_ | 1816797352366702592 |
adam_text | |
any_adam_object | |
author | Ferrara, Laurent |
author2 | Guégan, Dominique |
author2_role | ctb |
author2_variant | d g dg |
author_facet | Ferrara, Laurent Guégan, Dominique |
author_role | aut |
author_sort | Ferrara, Laurent |
author_variant | l f lf |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC ZDB-13-SOC-article |
ctrlnum | (DE-627-1)061301809 (DE-599)KEP061301809 (FR-PaOEC)jbcma-v2005-art9-en (EBP)061301809 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/jbcma-v2005-art9-en |
format | Electronic Article |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02017caa a22003732 4500</leader><controlfield tag="001">ZDB-13-SOC-061301809</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20231204121130.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210204s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/jbcma-v2005-art9-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)061301809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP061301809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)jbcma-v2005-art9-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)061301809</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ferrara, Laurent</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection of the Industrial Business Cycle using SETAR Models</subfield><subfield code="c">Laurent, Ferrara and Dominique, Guégan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (19 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we consider a threshold time series model in order to take into account certain stylized facts of the business cycle, such as asymmetries in the phases of the cycle. Our aim is to point out some thresholds under (over) which a signal of turning point could be given in real-time. First, we introduce the various threshold models and we discuss both their statistical theoretical and empirical properties. Especially, we review the classical techniques to estimate the number of regimes, the threshold, the delay and the parameters of the model. Then we apply these models to the Euro-zone industrial production index to detect in real-time, trough a dynamic simulation approach, the dates of peaks and throughs in the business cycle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guégan, Dominique</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Business Cycle Measurement and Analysis</subfield><subfield code="g">Vol. 2005, no. 3, p. 353-371</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2005</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:353-371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/jbcma-v2005-art9-en</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC-article</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-061301809 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:56:13Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (19 p.) |
psigel | ZDB-13-SOC ZDB-13-SOC-article |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | OECD Publishing |
record_format | marc |
spelling | Ferrara, Laurent VerfasserIn aut Detection of the Industrial Business Cycle using SETAR Models Laurent, Ferrara and Dominique, Guégan Paris OECD Publishing 2006 1 Online-Ressource (19 p.) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a threshold time series model in order to take into account certain stylized facts of the business cycle, such as asymmetries in the phases of the cycle. Our aim is to point out some thresholds under (over) which a signal of turning point could be given in real-time. First, we introduce the various threshold models and we discuss both their statistical theoretical and empirical properties. Especially, we review the classical techniques to estimate the number of regimes, the threshold, the delay and the parameters of the model. Then we apply these models to the Euro-zone industrial production index to detect in real-time, trough a dynamic simulation approach, the dates of peaks and throughs in the business cycle. Economics Guégan, Dominique MitwirkendeR ctb Enthalten in Journal of Business Cycle Measurement and Analysis Vol. 2005, no. 3, p. 353-371 volume:2005 year:2005 number:3 pages:353-371 FWS01 ZDB-13-SOC FWS_PDA_SOC https://doi.org/10.1787/jbcma-v2005-art9-en Volltext |
spellingShingle | Ferrara, Laurent Detection of the Industrial Business Cycle using SETAR Models Economics |
title | Detection of the Industrial Business Cycle using SETAR Models |
title_auth | Detection of the Industrial Business Cycle using SETAR Models |
title_exact_search | Detection of the Industrial Business Cycle using SETAR Models |
title_full | Detection of the Industrial Business Cycle using SETAR Models Laurent, Ferrara and Dominique, Guégan |
title_fullStr | Detection of the Industrial Business Cycle using SETAR Models Laurent, Ferrara and Dominique, Guégan |
title_full_unstemmed | Detection of the Industrial Business Cycle using SETAR Models Laurent, Ferrara and Dominique, Guégan |
title_short | Detection of the Industrial Business Cycle using SETAR Models |
title_sort | detection of the industrial business cycle using setar models |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/jbcma-v2005-art9-en |
work_keys_str_mv | AT ferraralaurent detectionoftheindustrialbusinesscycleusingsetarmodels AT guegandominique detectionoftheindustrialbusinesscycleusingsetarmodels |