Invariance analyses in large-scale studies:
Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from mult...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , , , , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2019
|
Schriftenreihe: | OECD Education Working Papers
no.201 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from multiple observed responses. The comparison of such estimated scores across different groups of respondents is valid to the extent that the same set of estimated parameters holds in each group surveyed. This issue of invariance of parameter estimates is addressed in model fit indices which gauge the likelihood that one set of parameters can be used across all groups. Therefore, the problem of scale invariance across groups of respondents can typically be framed as the question of how well a single model fits the responses of all groups. However, the procedures used to evaluate the fit of these models pose a series of theoretical and practical problems. The most commonly applied procedures to establish invariance of cognitive and non-cognitive scales across countries in large-scale surveys are developed within the framework of confirmatory factor analysis and item response theory. The criteria that are commonly applied to evaluate the fit of such models, such as the decrement of the Comparative Fit Index in confirmatory factor analysis, work normally well in the comparison of a small number of countries or groups, but can perform poorly in large-scale surveys featuring a large number of countries. More specifically, the common criteria often result in the non-rejection of metric invariance; however, the step from metric invariance (i.e. identical factor loadings across countries) to scalar invariance (i.e. identical intercepts, in addition to identical factor loadings) appears to set overly restrictive standards for scalar invariance (i.e. identical intercepts). This report sets out to identify and apply novel procedures to evaluate model fit across a large number of groups, or novel scaling models that are more likely to pass common model fit criteria. |
Beschreibung: | 1 Online-Ressource (110 p.) |
DOI: | 10.1787/254738dd-en |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-061247286 | ||
003 | DE-627-1 | ||
005 | 20231204120926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210204s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/254738dd-en |2 doi | |
035 | |a (DE-627-1)061247286 | ||
035 | |a (DE-599)KEP061247286 | ||
035 | |a (FR-PaOEC)254738dd-en | ||
035 | |a (EBP)061247286 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Van de Vijver, Fons J. R... |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Invariance analyses in large-scale studies |c Fons J. R., Van de Vijver ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2019 | |
300 | |a 1 Online-Ressource (110 p.) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Education Working Papers |v no.201 | |
520 | |a Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from multiple observed responses. The comparison of such estimated scores across different groups of respondents is valid to the extent that the same set of estimated parameters holds in each group surveyed. This issue of invariance of parameter estimates is addressed in model fit indices which gauge the likelihood that one set of parameters can be used across all groups. Therefore, the problem of scale invariance across groups of respondents can typically be framed as the question of how well a single model fits the responses of all groups. However, the procedures used to evaluate the fit of these models pose a series of theoretical and practical problems. The most commonly applied procedures to establish invariance of cognitive and non-cognitive scales across countries in large-scale surveys are developed within the framework of confirmatory factor analysis and item response theory. The criteria that are commonly applied to evaluate the fit of such models, such as the decrement of the Comparative Fit Index in confirmatory factor analysis, work normally well in the comparison of a small number of countries or groups, but can perform poorly in large-scale surveys featuring a large number of countries. More specifically, the common criteria often result in the non-rejection of metric invariance; however, the step from metric invariance (i.e. identical factor loadings across countries) to scalar invariance (i.e. identical intercepts, in addition to identical factor loadings) appears to set overly restrictive standards for scalar invariance (i.e. identical intercepts). This report sets out to identify and apply novel procedures to evaluate model fit across a large number of groups, or novel scaling models that are more likely to pass common model fit criteria. | ||
650 | 4 | |a Education | |
700 | 1 | |a Avvisati, Francesco |e MitwirkendeR |4 ctb | |
700 | 1 | |a Davidov, Eldad |e MitwirkendeR |4 ctb | |
700 | 1 | |a Eid, Michael |e MitwirkendeR |4 ctb | |
700 | 1 | |a Fox, Jean-Paul |e MitwirkendeR |4 ctb | |
700 | 1 | |a Le Donné, Noémie |e MitwirkendeR |4 ctb | |
700 | 1 | |a Lek, Kimberley |e MitwirkendeR |4 ctb | |
700 | 1 | |a Meuleman, Bart |e MitwirkendeR |4 ctb | |
700 | 1 | |a Paccagnella, Marco |e MitwirkendeR |4 ctb | |
700 | 1 | |a van de Schoot, Rens |e MitwirkendeR |4 ctb | |
856 | 4 | 0 | |l FWS01 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/254738dd-en |3 Volltext |
912 | |a ZDB-13-SOC | ||
912 | |a BSZ-13-SOC-education | ||
912 | |a ZDB-13-SOC | ||
951 | |a BO | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-061247286 |
---|---|
_version_ | 1816797343726436352 |
adam_text | |
any_adam_object | |
author | Van de Vijver, Fons J. R.. |
author2 | Avvisati, Francesco Davidov, Eldad Eid, Michael Fox, Jean-Paul Le Donné, Noémie Lek, Kimberley Meuleman, Bart Paccagnella, Marco van de Schoot, Rens |
author2_role | ctb ctb ctb ctb ctb ctb ctb ctb ctb |
author2_variant | f a fa e d ed m e me j p f jpf d n l dn dnl k l kl b m bm m p mp d s r v dsr dsrv |
author_facet | Van de Vijver, Fons J. R.. Avvisati, Francesco Davidov, Eldad Eid, Michael Fox, Jean-Paul Le Donné, Noémie Lek, Kimberley Meuleman, Bart Paccagnella, Marco van de Schoot, Rens |
author_role | aut |
author_sort | Van de Vijver, Fons J. R.. |
author_variant | d v f j r v dvfjr dvfjrv |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC BSZ-13-SOC-education |
ctrlnum | (DE-627-1)061247286 (DE-599)KEP061247286 (FR-PaOEC)254738dd-en (EBP)061247286 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/254738dd-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03607cam a22004572 4500</leader><controlfield tag="001">ZDB-13-SOC-061247286</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20231204120926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210204s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/254738dd-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)061247286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP061247286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)254738dd-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)061247286</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van de Vijver, Fons J. R...</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariance analyses in large-scale studies</subfield><subfield code="c">Fons J. R., Van de Vijver ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (110 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Education Working Papers</subfield><subfield code="v">no.201</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from multiple observed responses. The comparison of such estimated scores across different groups of respondents is valid to the extent that the same set of estimated parameters holds in each group surveyed. This issue of invariance of parameter estimates is addressed in model fit indices which gauge the likelihood that one set of parameters can be used across all groups. Therefore, the problem of scale invariance across groups of respondents can typically be framed as the question of how well a single model fits the responses of all groups. However, the procedures used to evaluate the fit of these models pose a series of theoretical and practical problems. The most commonly applied procedures to establish invariance of cognitive and non-cognitive scales across countries in large-scale surveys are developed within the framework of confirmatory factor analysis and item response theory. The criteria that are commonly applied to evaluate the fit of such models, such as the decrement of the Comparative Fit Index in confirmatory factor analysis, work normally well in the comparison of a small number of countries or groups, but can perform poorly in large-scale surveys featuring a large number of countries. More specifically, the common criteria often result in the non-rejection of metric invariance; however, the step from metric invariance (i.e. identical factor loadings across countries) to scalar invariance (i.e. identical intercepts, in addition to identical factor loadings) appears to set overly restrictive standards for scalar invariance (i.e. identical intercepts). This report sets out to identify and apply novel procedures to evaluate model fit across a large number of groups, or novel scaling models that are more likely to pass common model fit criteria.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Education</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Avvisati, Francesco</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davidov, Eldad</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eid, Michael</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fox, Jean-Paul</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Le Donné, Noémie</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lek, Kimberley</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meuleman, Bart</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paccagnella, Marco</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van de Schoot, Rens</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/254738dd-en</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">BSZ-13-SOC-education</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-061247286 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:56:04Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (110 p.) |
psigel | ZDB-13-SOC BSZ-13-SOC-education |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Education Working Papers |
spelling | Van de Vijver, Fons J. R... VerfasserIn aut Invariance analyses in large-scale studies Fons J. R., Van de Vijver ... [et al] Paris OECD Publishing 2019 1 Online-Ressource (110 p.) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier OECD Education Working Papers no.201 Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from multiple observed responses. The comparison of such estimated scores across different groups of respondents is valid to the extent that the same set of estimated parameters holds in each group surveyed. This issue of invariance of parameter estimates is addressed in model fit indices which gauge the likelihood that one set of parameters can be used across all groups. Therefore, the problem of scale invariance across groups of respondents can typically be framed as the question of how well a single model fits the responses of all groups. However, the procedures used to evaluate the fit of these models pose a series of theoretical and practical problems. The most commonly applied procedures to establish invariance of cognitive and non-cognitive scales across countries in large-scale surveys are developed within the framework of confirmatory factor analysis and item response theory. The criteria that are commonly applied to evaluate the fit of such models, such as the decrement of the Comparative Fit Index in confirmatory factor analysis, work normally well in the comparison of a small number of countries or groups, but can perform poorly in large-scale surveys featuring a large number of countries. More specifically, the common criteria often result in the non-rejection of metric invariance; however, the step from metric invariance (i.e. identical factor loadings across countries) to scalar invariance (i.e. identical intercepts, in addition to identical factor loadings) appears to set overly restrictive standards for scalar invariance (i.e. identical intercepts). This report sets out to identify and apply novel procedures to evaluate model fit across a large number of groups, or novel scaling models that are more likely to pass common model fit criteria. Education Avvisati, Francesco MitwirkendeR ctb Davidov, Eldad MitwirkendeR ctb Eid, Michael MitwirkendeR ctb Fox, Jean-Paul MitwirkendeR ctb Le Donné, Noémie MitwirkendeR ctb Lek, Kimberley MitwirkendeR ctb Meuleman, Bart MitwirkendeR ctb Paccagnella, Marco MitwirkendeR ctb van de Schoot, Rens MitwirkendeR ctb FWS01 ZDB-13-SOC FWS_PDA_SOC https://doi.org/10.1787/254738dd-en Volltext |
spellingShingle | Van de Vijver, Fons J. R.. Invariance analyses in large-scale studies Education |
title | Invariance analyses in large-scale studies |
title_auth | Invariance analyses in large-scale studies |
title_exact_search | Invariance analyses in large-scale studies |
title_full | Invariance analyses in large-scale studies Fons J. R., Van de Vijver ... [et al] |
title_fullStr | Invariance analyses in large-scale studies Fons J. R., Van de Vijver ... [et al] |
title_full_unstemmed | Invariance analyses in large-scale studies Fons J. R., Van de Vijver ... [et al] |
title_short | Invariance analyses in large-scale studies |
title_sort | invariance analyses in large scale studies |
topic | Education |
topic_facet | Education |
url | https://doi.org/10.1787/254738dd-en |
work_keys_str_mv | AT vandevijverfonsjr invarianceanalysesinlargescalestudies AT avvisatifrancesco invarianceanalysesinlargescalestudies AT davidoveldad invarianceanalysesinlargescalestudies AT eidmichael invarianceanalysesinlargescalestudies AT foxjeanpaul invarianceanalysesinlargescalestudies AT ledonnenoemie invarianceanalysesinlargescalestudies AT lekkimberley invarianceanalysesinlargescalestudies AT meulemanbart invarianceanalysesinlargescalestudies AT paccagnellamarco invarianceanalysesinlargescalestudies AT vandeschootrens invarianceanalysesinlargescalestudies |