Big Data Measures of Well-Being: Evidence From a Google Well-Being Index in the United States
We build an indicator of individual subjective well-being in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with the weekly time-series of subjective well-being measures disseminated by Gallup Analytics. We find that...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2016
|
Schriftenreihe: | OECD Statistics Working Papers
no.2016/03 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | We build an indicator of individual subjective well-being in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with the weekly time-series of subjective well-being measures disseminated by Gallup Analytics. We find that keywords associated with job search, financial security, family life and leisure are the strongest predictors of the variations in subjective well-being. The model successfully predicts the out-of-sample evolution of most subjective well-being measures at a one-year horizon. |
Beschreibung: | 1 Online-Ressource (37 p.) 21 x 29.7cm. |
DOI: | 10.1787/5jlz9hpg0rd1-en |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-061243051 | ||
003 | DE-627-1 | ||
005 | 20231204120917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210204s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/5jlz9hpg0rd1-en |2 doi | |
035 | |a (DE-627-1)061243051 | ||
035 | |a (DE-599)KEP061243051 | ||
035 | |a (FR-PaOEC)5jlz9hpg0rd1-en | ||
035 | |a (EBP)061243051 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Algan, Yann |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Big Data Measures of Well-Being |b Evidence From a Google Well-Being Index in the United States |c Yann, Algan ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2016 | |
300 | |a 1 Online-Ressource (37 p.) |c 21 x 29.7cm. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Statistics Working Papers |v no.2016/03 | |
520 | |a We build an indicator of individual subjective well-being in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with the weekly time-series of subjective well-being measures disseminated by Gallup Analytics. We find that keywords associated with job search, financial security, family life and leisure are the strongest predictors of the variations in subjective well-being. The model successfully predicts the out-of-sample evolution of most subjective well-being measures at a one-year horizon. | ||
650 | 4 | |a Employment | |
650 | 4 | |a Economics | |
650 | 4 | |a United States | |
700 | 1 | |a Beasley, Elizabeth |e MitwirkendeR |4 ctb | |
700 | 1 | |a Guyot, Florian |e MitwirkendeR |4 ctb | |
700 | 1 | |a Higa, Kazuhito |e MitwirkendeR |4 ctb | |
700 | 1 | |a Murtin, Fabrice |e MitwirkendeR |4 ctb | |
700 | 1 | |a Senik, Claudia |e MitwirkendeR |4 ctb | |
856 | 4 | 0 | |l FWS01 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/5jlz9hpg0rd1-en |3 Volltext |
912 | |a ZDB-13-SOC | ||
912 | |a ZDB-13-SOC | ||
951 | |a BO | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-061243051 |
---|---|
_version_ | 1816797344037863425 |
adam_text | |
any_adam_object | |
author | Algan, Yann |
author2 | Beasley, Elizabeth Guyot, Florian Higa, Kazuhito Murtin, Fabrice Senik, Claudia |
author2_role | ctb ctb ctb ctb ctb |
author2_variant | e b eb f g fg k h kh f m fm c s cs |
author_facet | Algan, Yann Beasley, Elizabeth Guyot, Florian Higa, Kazuhito Murtin, Fabrice Senik, Claudia |
author_role | aut |
author_sort | Algan, Yann |
author_variant | y a ya |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC |
ctrlnum | (DE-627-1)061243051 (DE-599)KEP061243051 (FR-PaOEC)5jlz9hpg0rd1-en (EBP)061243051 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/5jlz9hpg0rd1-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01963cam a22004212 4500</leader><controlfield tag="001">ZDB-13-SOC-061243051</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20231204120917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210204s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/5jlz9hpg0rd1-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)061243051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP061243051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)5jlz9hpg0rd1-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)061243051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Algan, Yann</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big Data Measures of Well-Being</subfield><subfield code="b">Evidence From a Google Well-Being Index in the United States</subfield><subfield code="c">Yann, Algan ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (37 p.)</subfield><subfield code="c">21 x 29.7cm.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Statistics Working Papers</subfield><subfield code="v">no.2016/03</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We build an indicator of individual subjective well-being in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with the weekly time-series of subjective well-being measures disseminated by Gallup Analytics. We find that keywords associated with job search, financial security, family life and leisure are the strongest predictors of the variations in subjective well-being. The model successfully predicts the out-of-sample evolution of most subjective well-being measures at a one-year horizon.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Employment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">United States</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beasley, Elizabeth</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guyot, Florian</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Higa, Kazuhito</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murtin, Fabrice</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Senik, Claudia</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/5jlz9hpg0rd1-en</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-061243051 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:56:04Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (37 p.) 21 x 29.7cm. |
psigel | ZDB-13-SOC |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Statistics Working Papers |
spelling | Algan, Yann VerfasserIn aut Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States Yann, Algan ... [et al] Paris OECD Publishing 2016 1 Online-Ressource (37 p.) 21 x 29.7cm. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier OECD Statistics Working Papers no.2016/03 We build an indicator of individual subjective well-being in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with the weekly time-series of subjective well-being measures disseminated by Gallup Analytics. We find that keywords associated with job search, financial security, family life and leisure are the strongest predictors of the variations in subjective well-being. The model successfully predicts the out-of-sample evolution of most subjective well-being measures at a one-year horizon. Employment Economics United States Beasley, Elizabeth MitwirkendeR ctb Guyot, Florian MitwirkendeR ctb Higa, Kazuhito MitwirkendeR ctb Murtin, Fabrice MitwirkendeR ctb Senik, Claudia MitwirkendeR ctb FWS01 ZDB-13-SOC FWS_PDA_SOC https://doi.org/10.1787/5jlz9hpg0rd1-en Volltext |
spellingShingle | Algan, Yann Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States Employment Economics United States |
title | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States |
title_auth | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States |
title_exact_search | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States |
title_full | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States Yann, Algan ... [et al] |
title_fullStr | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States Yann, Algan ... [et al] |
title_full_unstemmed | Big Data Measures of Well-Being Evidence From a Google Well-Being Index in the United States Yann, Algan ... [et al] |
title_short | Big Data Measures of Well-Being |
title_sort | big data measures of well being evidence from a google well being index in the united states |
title_sub | Evidence From a Google Well-Being Index in the United States |
topic | Employment Economics United States |
topic_facet | Employment Economics United States |
url | https://doi.org/10.1787/5jlz9hpg0rd1-en |
work_keys_str_mv | AT alganyann bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates AT beasleyelizabeth bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates AT guyotflorian bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates AT higakazuhito bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates AT murtinfabrice bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates AT senikclaudia bigdatameasuresofwellbeingevidencefromagooglewellbeingindexintheunitedstates |