Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning: = Multi-hazard exposure modeling with multimodal geo-image data and deep learning
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | German |
Veröffentlicht: |
München
2024
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | erschienen 2025 |
Beschreibung: | XV, 140 Seiten Illustrationen, Diagramme |
DOI: | 10.25972/OPUS-40155 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050228810 | ||
003 | DE-604 | ||
005 | 20250410 | ||
007 | t| | ||
008 | 250401s2024 gw a||| m||| 00||| ger d | ||
015 | |a 25,O04 |2 dnb | ||
035 | |a (DE-599)BVBBV050228810 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a ger | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a RB 10104 |0 (DE-625)142220:12617 |2 rvk | ||
084 | |8 1\p |a 006.31 |2 23ksdnb | ||
084 | |8 2\p |a 004 |2 23sdnb | ||
100 | 1 | |a Aravena Pelizari, Patrick |d 19XX- |e Verfasser |0 (DE-588)1361989238 |4 aut | |
245 | 1 | 0 | |a Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning |b = Multi-hazard exposure modeling with multimodal geo-image data and deep learning |c vorgelegt von Patrick Aravena Pelizari aus München |
246 | 1 | 1 | |a Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
264 | 1 | |a München |c 2024 | |
300 | |a XV, 140 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a erschienen 2025 | ||
502 | |b Dissertation |c Julius-Maximilians-Universität Würzburg |d 2024 | ||
546 | |a Zusammenfassung in deutscher und englischer Sprache | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumdaten |0 (DE-588)4206012-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Naturgefahr |0 (DE-588)4123823-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
653 | |a Naturgefahren | ||
653 | |a Vulnerabilität | ||
653 | |a natural hazard exposure | ||
653 | |a vulnerability | ||
653 | |a street-level imagery | ||
653 | |a remote sensing | ||
653 | |a machine learning | ||
653 | |a Disaster Risk | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Naturgefahr |0 (DE-588)4123823-0 |D s |
689 | 0 | 1 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | 2 | |a Raumdaten |0 (DE-588)4206012-6 |D s |
689 | 0 | 3 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:20-opus-401556 |o doi:10.25972/OPUS-40155 |
856 | 4 | 1 | |u https://doi.org/10.25972/OPUS-40155 |x Resolving-System |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,14280 |d 20250305 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,37079 |d 20250305 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20250303 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035563660 |
Datensatz im Suchindex
_version_ | 1829024489945432064 |
---|---|
adam_text | |
any_adam_object | |
author | Aravena Pelizari, Patrick 19XX- |
author_GND | (DE-588)1361989238 |
author_facet | Aravena Pelizari, Patrick 19XX- |
author_role | aut |
author_sort | Aravena Pelizari, Patrick 19XX- |
author_variant | p p a pp ppa |
building | Verbundindex |
bvnumber | BV050228810 |
classification_rvk | RB 10104 |
collection | ebook |
ctrlnum | (DE-599)BVBBV050228810 |
discipline | Geographie |
doi_str_mv | 10.25972/OPUS-40155 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050228810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250410</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">250401s2024 gw a||| m||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">25,O04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050228810</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10104</subfield><subfield code="0">(DE-625)142220:12617</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">006.31</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aravena Pelizari, Patrick</subfield><subfield code="d">19XX-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1361989238</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning</subfield><subfield code="b">= Multi-hazard exposure modeling with multimodal geo-image data and deep learning</subfield><subfield code="c">vorgelegt von Patrick Aravena Pelizari aus München</subfield></datafield><datafield tag="246" ind1="1" ind2="1"><subfield code="a">Multi-hazard exposure modeling with multimodal geo-image data and deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 140 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">erschienen 2025</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Julius-Maximilians-Universität Würzburg</subfield><subfield code="d">2024</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Zusammenfassung in deutscher und englischer Sprache</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Naturgefahr</subfield><subfield code="0">(DE-588)4123823-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Naturgefahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vulnerabilität</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">natural hazard exposure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vulnerability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">street-level imagery</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">remote sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Disaster Risk</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Naturgefahr</subfield><subfield code="0">(DE-588)4123823-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:20-opus-401556</subfield><subfield code="o">doi:10.25972/OPUS-40155</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.25972/OPUS-40155</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,14280</subfield><subfield code="d">20250305</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,37079</subfield><subfield code="d">20250305</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20250303</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035563660</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV050228810 |
illustrated | Illustrated |
indexdate | 2025-04-10T14:01:19Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035563660 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | XV, 140 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
record_format | marc |
spelling | Aravena Pelizari, Patrick 19XX- Verfasser (DE-588)1361989238 aut Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning vorgelegt von Patrick Aravena Pelizari aus München Multi-hazard exposure modeling with multimodal geo-image data and deep learning München 2024 XV, 140 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier erschienen 2025 Dissertation Julius-Maximilians-Universität Würzburg 2024 Zusammenfassung in deutscher und englischer Sprache Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Deep Learning (DE-588)1135597375 gnd rswk-swf Raumdaten (DE-588)4206012-6 gnd rswk-swf Naturgefahr (DE-588)4123823-0 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf Naturgefahren Vulnerabilität natural hazard exposure vulnerability street-level imagery remote sensing machine learning Disaster Risk (DE-588)4113937-9 Hochschulschrift gnd-content Naturgefahr (DE-588)4123823-0 s Modellierung (DE-588)4170297-9 s Raumdaten (DE-588)4206012-6 s Deep Learning (DE-588)1135597375 s DE-604 Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:20-opus-401556 doi:10.25972/OPUS-40155 https://doi.org/10.25972/OPUS-40155 Resolving-System kostenfrei Volltext 1\p emakn 0,14280 20250305 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,37079 20250305 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20250303 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Aravena Pelizari, Patrick 19XX- Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning Deep Learning (DE-588)1135597375 gnd Raumdaten (DE-588)4206012-6 gnd Naturgefahr (DE-588)4123823-0 gnd Modellierung (DE-588)4170297-9 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4206012-6 (DE-588)4123823-0 (DE-588)4170297-9 (DE-588)4113937-9 |
title | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
title_alt | Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
title_auth | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
title_exact_search | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
title_full | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning vorgelegt von Patrick Aravena Pelizari aus München |
title_fullStr | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning vorgelegt von Patrick Aravena Pelizari aus München |
title_full_unstemmed | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning = Multi-hazard exposure modeling with multimodal geo-image data and deep learning vorgelegt von Patrick Aravena Pelizari aus München |
title_short | Multihazard-Expositionsmodellierung mit multimodalen Geobilddaten und Deep Learning |
title_sort | multihazard expositionsmodellierung mit multimodalen geobilddaten und deep learning multi hazard exposure modeling with multimodal geo image data and deep learning |
title_sub | = Multi-hazard exposure modeling with multimodal geo-image data and deep learning |
topic | Deep Learning (DE-588)1135597375 gnd Raumdaten (DE-588)4206012-6 gnd Naturgefahr (DE-588)4123823-0 gnd Modellierung (DE-588)4170297-9 gnd |
topic_facet | Deep Learning Raumdaten Naturgefahr Modellierung Hochschulschrift |
url | https://doi.org/10.25972/OPUS-40155 |
work_keys_str_mv | AT aravenapelizaripatrick multihazardexpositionsmodellierungmitmultimodalengeobilddatenunddeeplearningmultihazardexposuremodelingwithmultimodalgeoimagedataanddeeplearning AT aravenapelizaripatrick multihazardexposuremodelingwithmultimodalgeoimagedataanddeeplearning |