Metaheuristic Algorithms: Theory and Practice
This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press, Taylor & Francis Group
2024
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | DE-824 Volltext |
Zusammenfassung: | This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics |
Beschreibung: | OCLC-licensed vendor bibliographic record |
Beschreibung: | 1 Online-Ressource (xviii, 452 Seiten) |
ISBN: | 9781003422426 100342242X 9781040000366 1040000363 9781040000342 1040000347 |
DOI: | 10.1201/9781003422426 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050218369 | ||
003 | DE-604 | ||
005 | 20250403 | ||
007 | cr|uuu---uuuuu | ||
008 | 250326s2024 xx o|||| 00||| eng d | ||
020 | |a 9781003422426 |9 978-1-003-42242-6 | ||
020 | |a 100342242X |9 1-003-42242-X | ||
020 | |a 9781040000366 |9 978-1-04-000036-6 | ||
020 | |a 1040000363 |9 1-04-000036-3 | ||
020 | |a 9781040000342 |9 978-1-04-000034-2 | ||
020 | |a 1040000347 |9 1-04-000034-7 | ||
024 | 7 | |a 10.1201/9781003422426 |2 doi | |
035 | |a (ZDB-7-TFC)9781003422426 | ||
035 | |a (DE-599)BVBBV050218369 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-824 | ||
082 | 0 | |a 005.13 |2 23//eng/20240223eng | |
100 | 1 | |a Wang, Gai-Ge |d 1984- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Metaheuristic Algorithms |b Theory and Practice |c Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li |
250 | |a First edition | ||
264 | 1 | |a Boca Raton |b CRC Press, Taylor & Francis Group |c 2024 | |
300 | |a 1 Online-Ressource (xviii, 452 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a OCLC-licensed vendor bibliographic record | ||
520 | |a This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics | ||
650 | 7 | |a COMPUTERS / General |2 bisacsh | |
650 | 7 | |a COMPUTERS / Programming / Algorithms |2 bisacsh | |
650 | 7 | |a COMPUTERS / Artificial Intelligence |2 bisacsh | |
650 | 4 | |a Heuristic algorithms | |
700 | 1 | |a Zhao, Xiaoqi |4 aut | |
700 | 1 | |a Li, Keqin |d 1963- |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1032714042 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781032714042 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781032727608 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003422426 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035553383 | |
966 | e | |u https://doi.org/10.1201/9781003422426 |l DE-824 |p ZDB-7-TFC |q UEI_PDA_TFC2_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1828360044230475776 |
---|---|
adam_text | |
any_adam_object | |
author | Wang, Gai-Ge 1984- Zhao, Xiaoqi Li, Keqin 1963- |
author_facet | Wang, Gai-Ge 1984- Zhao, Xiaoqi Li, Keqin 1963- |
author_role | aut aut aut |
author_sort | Wang, Gai-Ge 1984- |
author_variant | g g w ggw x z xz k l kl |
building | Verbundindex |
bvnumber | BV050218369 |
collection | ZDB-7-TFC |
ctrlnum | (ZDB-7-TFC)9781003422426 (DE-599)BVBBV050218369 |
dewey-full | 005.13 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13 |
dewey-search | 005.13 |
dewey-sort | 15.13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1201/9781003422426 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050218369</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250403</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250326s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003422426</subfield><subfield code="9">978-1-003-42242-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">100342242X</subfield><subfield code="9">1-003-42242-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040000366</subfield><subfield code="9">978-1-04-000036-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1040000363</subfield><subfield code="9">1-04-000036-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040000342</subfield><subfield code="9">978-1-04-000034-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1040000347</subfield><subfield code="9">1-04-000034-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003422426</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-7-TFC)9781003422426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050218369</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13</subfield><subfield code="2">23//eng/20240223eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Gai-Ge</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metaheuristic Algorithms</subfield><subfield code="b">Theory and Practice</subfield><subfield code="c">Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 452 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">OCLC-licensed vendor bibliographic record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming / Algorithms</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Artificial Intelligence</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xiaoqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Keqin</subfield><subfield code="d">1963-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1032714042</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781032714042</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781032727608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003422426</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035553383</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003422426</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="q">UEI_PDA_TFC2_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050218369 |
illustrated | Not Illustrated |
indexdate | 2025-04-03T06:00:15Z |
institution | BVB |
isbn | 9781003422426 100342242X 9781040000366 1040000363 9781040000342 1040000347 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035553383 |
open_access_boolean | |
owner | DE-824 |
owner_facet | DE-824 |
physical | 1 Online-Ressource (xviii, 452 Seiten) |
psigel | ZDB-7-TFC ZDB-7-TFC UEI_PDA_TFC2_Kauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Wang, Gai-Ge 1984- Verfasser aut Metaheuristic Algorithms Theory and Practice Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li First edition Boca Raton CRC Press, Taylor & Francis Group 2024 1 Online-Ressource (xviii, 452 Seiten) txt rdacontent c rdamedia cr rdacarrier OCLC-licensed vendor bibliographic record This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics COMPUTERS / General bisacsh COMPUTERS / Programming / Algorithms bisacsh COMPUTERS / Artificial Intelligence bisacsh Heuristic algorithms Zhao, Xiaoqi aut Li, Keqin 1963- aut Erscheint auch als Druck-Ausgabe 1032714042 Erscheint auch als Druck-Ausgabe 9781032714042 Erscheint auch als Druck-Ausgabe 9781032727608 https://doi.org/10.1201/9781003422426 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wang, Gai-Ge 1984- Zhao, Xiaoqi Li, Keqin 1963- Metaheuristic Algorithms Theory and Practice COMPUTERS / General bisacsh COMPUTERS / Programming / Algorithms bisacsh COMPUTERS / Artificial Intelligence bisacsh Heuristic algorithms |
title | Metaheuristic Algorithms Theory and Practice |
title_auth | Metaheuristic Algorithms Theory and Practice |
title_exact_search | Metaheuristic Algorithms Theory and Practice |
title_full | Metaheuristic Algorithms Theory and Practice Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li |
title_fullStr | Metaheuristic Algorithms Theory and Practice Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li |
title_full_unstemmed | Metaheuristic Algorithms Theory and Practice Gai-Ge Wang, Xiaoqi Zhao, and Keqin Li |
title_short | Metaheuristic Algorithms |
title_sort | metaheuristic algorithms theory and practice |
title_sub | Theory and Practice |
topic | COMPUTERS / General bisacsh COMPUTERS / Programming / Algorithms bisacsh COMPUTERS / Artificial Intelligence bisacsh Heuristic algorithms |
topic_facet | COMPUTERS / General COMPUTERS / Programming / Algorithms COMPUTERS / Artificial Intelligence Heuristic algorithms |
url | https://doi.org/10.1201/9781003422426 |
work_keys_str_mv | AT wanggaige metaheuristicalgorithmstheoryandpractice AT zhaoxiaoqi metaheuristicalgorithmstheoryandpractice AT likeqin metaheuristicalgorithmstheoryandpractice |