Deep learning in time series analysis:

"The concept of deep machine learning becomes easier to understandable by paying attention to the cyclic stochastic time series and a time series whose content is non-stationary not only within the cycles, but also over the cycles as the beat to beat variations. This book introduces original de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gharehbaghi, Arash 1972- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton CRC Press 2023
Ausgabe:First edition
Schlagworte:
Online-Zugang:DE-824
Volltext
Zusammenfassung:"The concept of deep machine learning becomes easier to understandable by paying attention to the cyclic stochastic time series and a time series whose content is non-stationary not only within the cycles, but also over the cycles as the beat to beat variations. This book introduces original deep learning methods for classification of such the time series using proposed clustering methods as the learning tools at the deep level"--
Beschreibung:OCLC-licensed vendor bibliographic record
Beschreibung:1 Online-Ressource
ISBN:9780429321252
0429321252
9781000911435
1000911438
9781000911404
1000911403
DOI:10.1201/9780429321252

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen