Nanoheteroepitaxy of Indium Phosphide nanostructures on CMOS-Si using gas-source molecular-beam epitaxy:

Diese Dissertation untersucht das selektive Wachstum von Indiumphosphid (InP)-Nanostrukturen auf Silizium-Nanospitzen-Substraten (Si NT) mittels Gasquellen-Molekularstrahlepitaxie über den Nanoheteroepitaxie-Ansatz (NHE). Durch Anpassung der thermischen Reinigungstemperaturen vor dem Wachstum wurde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kamath, Anagha (VerfasserIn)
Format: Abschlussarbeit Buch
Sprache:English
Veröffentlicht: Berlin [2024?]
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:Diese Dissertation untersucht das selektive Wachstum von Indiumphosphid (InP)-Nanostrukturen auf Silizium-Nanospitzen-Substraten (Si NT) mittels Gasquellen-Molekularstrahlepitaxie über den Nanoheteroepitaxie-Ansatz (NHE). Durch Anpassung der thermischen Reinigungstemperaturen vor dem Wachstum wurde der Übergang zwischen 1-dimensionalem Nanodraht- (NW) und 3-dimensionalem Nanoinselwachstum auf demselben Wafer demonstriert. Diese Anpassungsfähigkeit ist entscheidend für die Realisierung maßgeschneiderter nanoskaliger Halbleiterbauelemente. Die strukturellen und optischen Eigenschaften von NWs, die auf Si NT(001)-Substraten gewachsen sind, wurden umfassend analysiert. Diese NWs zeigten Polytopie mit sowohl Wurtzit- als auch Zinkblende-Kristallstrukturen und einer Typ-II-Bandausrichtung und wiesen Lumineszenz bei Raumtemperatur auf. Nanoinsel-Proben, die auf Si(001)- und Si(111)-Nanospitzen-Substraten gewachsen sind, behielten eine Zinkblende-Struktur bei und waren vollständig entspannt, was mit den jeweiligen Substraten übereinstimmte. Diese Nanoinseln wiesen jedoch keine Lumineszenz bei Raumtemperatur auf, was auf einen Verbesserungsbedarf des Materials hinweist. Die Wachstumsoptimierung für Nanoinseln auf Si NT(001)-Substraten ergab einen idealen Temperaturbereich von 490°C bis 530°C mit einem konstanten Phosphin-Fluss von 4 sccm und einer Wachstumsrate von 0,7 Å/s, was zu reproduzierbaren und hochwertigen Ergebnissen führte. Ein Testbauelement, das mit n-p dotierten InP-Nanoinseln gefertigt wurde, wurde hinsichtlich seiner elektrischen Eigenschaften bewertet, um seine Integration in funktionale Halbleiterbauelemente zu untersuchen. Insgesamt erweitert diese Arbeit das Verständnis des InP-Nanostruktursyntheseprozesses auf Si NT-Substraten mittels NHE und hebt ihr Potenzial für zukünftige Halbleitertechnologien, insbesondere für CMOS-kompatible Anwendungen, hervor.
This thesis investigates the selective growth of Indium Phosphide (InP) nanostructures on Silicon nanotip (Si NT) substrates using gas-source molecular beam epitaxy via the nanoheteroepitaxy (NHE) approach. By adjusting thermal cleaning temperatures prior to growth, the transition between 1-dimensional nanowire (NW) and 3-dimensional nanoisland growth on the same wafer was demonstrated. This adaptability is essential for realizing customized nanoscale semiconductor devices. The structural and optical properties of NWs grown on Si NT(001) substrates were thoroughly analyzed. These NWs exhibited polytypism, featuring both wurtzite and zincblende crystal structures with a type-II band alignment, and showed luminescence at room temperature. Nanoisland samples grown on Si(001) and Si(111) nanotip substrates retained a zincblende structure and were fully relaxed, aligning with their respective substrates. However, these nanoislands did not exhibit room-temperature luminescence, indicating a need for further material improvement. Growth optimization for nanoislands on Si NT(001) substrates identified an ideal temperature range of 490°C to 530°C with a constant phosphine flux of 4 sccm and a growth rate of 0.7 Å/s, ensuring reproducible, high-quality results. A test device fabricated using n-p doped InP nanoislands was assessed for electrical properties to explore their integration into functional semiconductor devices. Overall, this work advances the understanding of InP nanostructure synthesis on Si NT substrates via NHE and highlights their potential for future semiconductor technologies, particularly for CMOS-compatible applications.
Beschreibung:Eingereicht am: 06 Juni 2024. Tag der mündlichen Prüfung: 25 Oktober 2024.
Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache.
Beschreibung:xvii, 142 Seiten Illustrationen, Diagramme (farbig)

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen