Machine learning for archaeological applications in R:
This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2024
|
Schriftenreihe: | Cambridge elements
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-473 Volltext |
Zusammenfassung: | This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided in this Element |
Beschreibung: | Title from publisher's bibliographic system (viewed on 18 Dec 2024) |
Beschreibung: | 1 Online-Ressource (90 Seiten) |
ISBN: | 9781009506625 |
DOI: | 10.1017/9781009506625 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050175681 | ||
003 | DE-604 | ||
005 | 20250328 | ||
007 | cr|uuu---uuuuu | ||
008 | 250219s2024 xx o|||| 00||| eng d | ||
020 | |a 9781009506625 |9 978-1-009-50662-5 | ||
024 | 7 | |a 10.1017/9781009506625 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009506625 | ||
035 | |a (OCoLC)1510760486 | ||
035 | |a (DE-599)BVBBV050175681 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 930.10285 | |
100 | 1 | |a Argote, Denisse L. |e Verfasser |0 (DE-588)1359603220 |4 aut | |
245 | 1 | 0 | |a Machine learning for archaeological applications in R |c Denisse L. Argote [and three others] |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (90 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements | |
500 | |a Title from publisher's bibliographic system (viewed on 18 Dec 2024) | ||
520 | |a This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided in this Element | ||
650 | 4 | |a Archaeology / Data processing | |
650 | 4 | |a Machine learning | |
650 | 4 | |a R (Computer program language) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009506595 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009506649 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009506625?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035511545 | |
966 | e | |u https://doi.org/10.1017/9781009506625?locatt=mode:legacy |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009506625?locatt=mode:legacy |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1828134257148559360 |
---|---|
adam_text | |
any_adam_object | |
author | Argote, Denisse L. |
author_GND | (DE-588)1359603220 |
author_facet | Argote, Denisse L. |
author_role | aut |
author_sort | Argote, Denisse L. |
author_variant | d l a dl dla |
building | Verbundindex |
bvnumber | BV050175681 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009506625 (OCoLC)1510760486 (DE-599)BVBBV050175681 |
dewey-full | 930.10285 |
dewey-hundreds | 900 - History & geography |
dewey-ones | 930 - History of ancient world to ca. 499 |
dewey-raw | 930.10285 |
dewey-search | 930.10285 |
dewey-sort | 3930.10285 |
dewey-tens | 930 - History of ancient world to ca. 499 |
discipline | Geschichte Klassische Archäologie |
doi_str_mv | 10.1017/9781009506625 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050175681</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250328</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250219s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009506625</subfield><subfield code="9">978-1-009-50662-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009506625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009506625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1510760486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050175681</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">930.10285</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Argote, Denisse L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1359603220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for archaeological applications in R</subfield><subfield code="c">Denisse L. Argote [and three others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (90 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 18 Dec 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided in this Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaeology / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009506595</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009506649</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009506625?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035511545</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009506625?locatt=mode:legacy</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009506625?locatt=mode:legacy</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050175681 |
illustrated | Not Illustrated |
indexdate | 2025-03-31T18:11:27Z |
institution | BVB |
isbn | 9781009506625 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035511545 |
oclc_num | 1510760486 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (90 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements |
spelling | Argote, Denisse L. Verfasser (DE-588)1359603220 aut Machine learning for archaeological applications in R Denisse L. Argote [and three others] Cambridge Cambridge University Press 2024 1 Online-Ressource (90 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge elements Title from publisher's bibliographic system (viewed on 18 Dec 2024) This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided in this Element Archaeology / Data processing Machine learning R (Computer program language) Erscheint auch als Druck-Ausgabe 9781009506595 Erscheint auch als Druck-Ausgabe 9781009506649 https://doi.org/10.1017/9781009506625?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Argote, Denisse L. Machine learning for archaeological applications in R Archaeology / Data processing Machine learning R (Computer program language) |
title | Machine learning for archaeological applications in R |
title_auth | Machine learning for archaeological applications in R |
title_exact_search | Machine learning for archaeological applications in R |
title_full | Machine learning for archaeological applications in R Denisse L. Argote [and three others] |
title_fullStr | Machine learning for archaeological applications in R Denisse L. Argote [and three others] |
title_full_unstemmed | Machine learning for archaeological applications in R Denisse L. Argote [and three others] |
title_short | Machine learning for archaeological applications in R |
title_sort | machine learning for archaeological applications in r |
topic | Archaeology / Data processing Machine learning R (Computer program language) |
topic_facet | Archaeology / Data processing Machine learning R (Computer program language) |
url | https://doi.org/10.1017/9781009506625?locatt=mode:legacy |
work_keys_str_mv | AT argotedenissel machinelearningforarchaeologicalapplicationsinr |