The Art of Data Science: A Practitioner's Guide
Author Doug Gray shares the most important lessons he has learned over the course of his 30+ year career in analytics and technology. Readers will witness the Analytical Sciences profession through the eye of a practitioner who has delivered solutions that generate hundreds of millions of dollars an...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
CRC Press LLC
2025
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Zusammenfassung: | Author Doug Gray shares the most important lessons he has learned over the course of his 30+ year career in analytics and technology. Readers will witness the Analytical Sciences profession through the eye of a practitioner who has delivered solutions that generate hundreds of millions of dollars annually in business value |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (219 Seiten) |
ISBN: | 9781040310380 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050174155 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250219s2025 xx o|||| 00||| eng d | ||
020 | |a 9781040310380 |9 978-1-04-031038-0 | ||
035 | |a (ZDB-30-PQE)EBC31681151 | ||
035 | |a (ZDB-30-PAD)EBC31681151 | ||
035 | |a (ZDB-89-EBL)EBL31681151 | ||
035 | |a (OCoLC)1492396309 | ||
035 | |a (DE-599)BVBBV050174155 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.4012 | |
100 | 1 | |a Gray, Douglas A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Art of Data Science |b A Practitioner's Guide |
250 | |a 1st ed | ||
264 | 1 | |a Milton |b CRC Press LLC |c 2025 | |
264 | 4 | |c ©2025 | |
300 | |a 1 Online-Ressource (219 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Endorsements Page -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- About the Author -- Introduction -- Motivation -- Creating a Course and a Legacy -- Organization -- 1. Career Summary: On Becoming a Practitioner and Leader -- The "Key" to My Future -- Flying High (and Overseas) at AADT -- Data Down Under -- Movin' On Up -- Delivering Value -- Ride the Waves -- 2. The Dual Challenge of the Analytical Sciences Practitioner -- Introduction -- 3. Digital Transformation -- Introduction -- Observations and Foundational Experiences -- The Internet, Data, and Analytics in Digital Transformation -- The Why and How of Digital Transformation -- Digital Transformation: A Competitive Imperative -- 4. Advanced Analytics is Economically Transformational -- Introduction -- 5. Airworthy: American Airlines Heavy Maintenance Planning and Scheduling -- Introduction -- 6. Consulting Concepts Learned from Airworthy -- Introduction -- 7. A Modern Day Project Applying the Same Principles: Advanced Analytics Commodity Case -- Introduction -- 8. Right Tool, Right Place, Right Time (with Nader Kabbani) -- Introduction -- 9. Under Fire: Lessons from the Front - Revenue Management for Manufacturing -- Introduction -- 10. Analytics Nontechnical Skills -- Introduction -- What They Do Not Teach You in Your MS Data Science/ Business Analytics Program -- Three Common Reasons DS Projects Don't Get Implemented -- MBAs for Data Scientists (Expensive, but Worth It, in My Experience) -- Notes -- 11. Top 10 Analytics Leadership Skills (with Tom Davenport) -- Introduction -- Recruitment, Retention, People Development -- Generating Demand (Securing Projects by Domain Area) -- Relationship Building -- Understand the Business Domain (and Problem in Question) -- Change Management -- Project Management | |
505 | 8 | |a Communication Skills -- Planning, Budgeting, Administration, and P& -- L Management -- Practitioner Experience and Expertise -- Information Technology (IT) Experience and Expertise -- 12. Top 10 Reasons Analytical Sciences Projects Fail -- Introduction -- Why Data Science Projects Fail -- References -- Part 1: What's the Problem (That You're Trying to Solve)? -- Reference -- Part 2: Data, Data Everywhere ... But Not in One Location to Analyze -- Part 3: Misapplying the Model -- Part 4: Solving a Problem that is Not a Business Priority -- Part 5: Effective Communication -- Stories as Communication -- Part 6: Change Management -- Principles of Change Management -- Interactive Optimization -- Keys to Success -- Justification for Change -- Notes and References -- Part 7: Unrealistic Expectations -- Setting Business Value Benefits -- Part 8: Project Management -- The "Perfect" Project Management -- The Usual Suspects in PM -- Part 9: Excessive Focus on the Model, Technique, or Technology -- Part 10: Getting from Sandbox Model to Production System -- Failure Begets Success -- Conclusion -- Project Challenges -- Managing Change -- 13. Surrounded by Success -- Introduction -- 14. O.R. in 2048 -- Introduction -- Computing -- Models and Algorithms -- Software Tools -- People -- Conclusion -- References and Bibliography -- Index | |
520 | |a Author Doug Gray shares the most important lessons he has learned over the course of his 30+ year career in analytics and technology. Readers will witness the Analytical Sciences profession through the eye of a practitioner who has delivered solutions that generate hundreds of millions of dollars annually in business value | ||
650 | 4 | |a Business analysts | |
650 | 4 | |a Management-Statistical methods | |
650 | 4 | |a Quantitative research | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Gray, Douglas A. |t The Art of Data Science |d Milton : CRC Press LLC,c2025 |z 9781032816968 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035510035 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31681151 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508694086287360 |
---|---|
adam_text | |
any_adam_object | |
author | Gray, Douglas A. |
author_facet | Gray, Douglas A. |
author_role | aut |
author_sort | Gray, Douglas A. |
author_variant | d a g da dag |
building | Verbundindex |
bvnumber | BV050174155 |
contents | Cover -- Endorsements Page -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- About the Author -- Introduction -- Motivation -- Creating a Course and a Legacy -- Organization -- 1. Career Summary: On Becoming a Practitioner and Leader -- The "Key" to My Future -- Flying High (and Overseas) at AADT -- Data Down Under -- Movin' On Up -- Delivering Value -- Ride the Waves -- 2. The Dual Challenge of the Analytical Sciences Practitioner -- Introduction -- 3. Digital Transformation -- Introduction -- Observations and Foundational Experiences -- The Internet, Data, and Analytics in Digital Transformation -- The Why and How of Digital Transformation -- Digital Transformation: A Competitive Imperative -- 4. Advanced Analytics is Economically Transformational -- Introduction -- 5. Airworthy: American Airlines Heavy Maintenance Planning and Scheduling -- Introduction -- 6. Consulting Concepts Learned from Airworthy -- Introduction -- 7. A Modern Day Project Applying the Same Principles: Advanced Analytics Commodity Case -- Introduction -- 8. Right Tool, Right Place, Right Time (with Nader Kabbani) -- Introduction -- 9. Under Fire: Lessons from the Front - Revenue Management for Manufacturing -- Introduction -- 10. Analytics Nontechnical Skills -- Introduction -- What They Do Not Teach You in Your MS Data Science/ Business Analytics Program -- Three Common Reasons DS Projects Don't Get Implemented -- MBAs for Data Scientists (Expensive, but Worth It, in My Experience) -- Notes -- 11. Top 10 Analytics Leadership Skills (with Tom Davenport) -- Introduction -- Recruitment, Retention, People Development -- Generating Demand (Securing Projects by Domain Area) -- Relationship Building -- Understand the Business Domain (and Problem in Question) -- Change Management -- Project Management Communication Skills -- Planning, Budgeting, Administration, and P& -- L Management -- Practitioner Experience and Expertise -- Information Technology (IT) Experience and Expertise -- 12. Top 10 Reasons Analytical Sciences Projects Fail -- Introduction -- Why Data Science Projects Fail -- References -- Part 1: What's the Problem (That You're Trying to Solve)? -- Reference -- Part 2: Data, Data Everywhere ... But Not in One Location to Analyze -- Part 3: Misapplying the Model -- Part 4: Solving a Problem that is Not a Business Priority -- Part 5: Effective Communication -- Stories as Communication -- Part 6: Change Management -- Principles of Change Management -- Interactive Optimization -- Keys to Success -- Justification for Change -- Notes and References -- Part 7: Unrealistic Expectations -- Setting Business Value Benefits -- Part 8: Project Management -- The "Perfect" Project Management -- The Usual Suspects in PM -- Part 9: Excessive Focus on the Model, Technique, or Technology -- Part 10: Getting from Sandbox Model to Production System -- Failure Begets Success -- Conclusion -- Project Challenges -- Managing Change -- 13. Surrounded by Success -- Introduction -- 14. O.R. in 2048 -- Introduction -- Computing -- Models and Algorithms -- Software Tools -- People -- Conclusion -- References and Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC31681151 (ZDB-30-PAD)EBC31681151 (ZDB-89-EBL)EBL31681151 (OCoLC)1492396309 (DE-599)BVBBV050174155 |
dewey-full | 658.4012 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4012 |
dewey-search | 658.4012 |
dewey-sort | 3658.4012 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050174155</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250219s2025 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040310380</subfield><subfield code="9">978-1-04-031038-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31681151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31681151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31681151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1492396309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050174155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4012</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gray, Douglas A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Art of Data Science</subfield><subfield code="b">A Practitioner's Guide</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">CRC Press LLC</subfield><subfield code="c">2025</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (219 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Endorsements Page -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- About the Author -- Introduction -- Motivation -- Creating a Course and a Legacy -- Organization -- 1. Career Summary: On Becoming a Practitioner and Leader -- The "Key" to My Future -- Flying High (and Overseas) at AADT -- Data Down Under -- Movin' On Up -- Delivering Value -- Ride the Waves -- 2. The Dual Challenge of the Analytical Sciences Practitioner -- Introduction -- 3. Digital Transformation -- Introduction -- Observations and Foundational Experiences -- The Internet, Data, and Analytics in Digital Transformation -- The Why and How of Digital Transformation -- Digital Transformation: A Competitive Imperative -- 4. Advanced Analytics is Economically Transformational -- Introduction -- 5. Airworthy: American Airlines Heavy Maintenance Planning and Scheduling -- Introduction -- 6. Consulting Concepts Learned from Airworthy -- Introduction -- 7. A Modern Day Project Applying the Same Principles: Advanced Analytics Commodity Case -- Introduction -- 8. Right Tool, Right Place, Right Time (with Nader Kabbani) -- Introduction -- 9. Under Fire: Lessons from the Front - Revenue Management for Manufacturing -- Introduction -- 10. Analytics Nontechnical Skills -- Introduction -- What They Do Not Teach You in Your MS Data Science/ Business Analytics Program -- Three Common Reasons DS Projects Don't Get Implemented -- MBAs for Data Scientists (Expensive, but Worth It, in My Experience) -- Notes -- 11. Top 10 Analytics Leadership Skills (with Tom Davenport) -- Introduction -- Recruitment, Retention, People Development -- Generating Demand (Securing Projects by Domain Area) -- Relationship Building -- Understand the Business Domain (and Problem in Question) -- Change Management -- Project Management</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Communication Skills -- Planning, Budgeting, Administration, and P&amp -- L Management -- Practitioner Experience and Expertise -- Information Technology (IT) Experience and Expertise -- 12. Top 10 Reasons Analytical Sciences Projects Fail -- Introduction -- Why Data Science Projects Fail -- References -- Part 1: What's the Problem (That You're Trying to Solve)? -- Reference -- Part 2: Data, Data Everywhere ... But Not in One Location to Analyze -- Part 3: Misapplying the Model -- Part 4: Solving a Problem that is Not a Business Priority -- Part 5: Effective Communication -- Stories as Communication -- Part 6: Change Management -- Principles of Change Management -- Interactive Optimization -- Keys to Success -- Justification for Change -- Notes and References -- Part 7: Unrealistic Expectations -- Setting Business Value Benefits -- Part 8: Project Management -- The "Perfect" Project Management -- The Usual Suspects in PM -- Part 9: Excessive Focus on the Model, Technique, or Technology -- Part 10: Getting from Sandbox Model to Production System -- Failure Begets Success -- Conclusion -- Project Challenges -- Managing Change -- 13. Surrounded by Success -- Introduction -- 14. O.R. in 2048 -- Introduction -- Computing -- Models and Algorithms -- Software Tools -- People -- Conclusion -- References and Bibliography -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Author Doug Gray shares the most important lessons he has learned over the course of his 30+ year career in analytics and technology. Readers will witness the Analytical Sciences profession through the eye of a practitioner who has delivered solutions that generate hundreds of millions of dollars annually in business value</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business analysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management-Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Gray, Douglas A.</subfield><subfield code="t">The Art of Data Science</subfield><subfield code="d">Milton : CRC Press LLC,c2025</subfield><subfield code="z">9781032816968</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035510035</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31681151</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050174155 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:44:41Z |
institution | BVB |
isbn | 9781040310380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035510035 |
oclc_num | 1492396309 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (219 Seiten) |
psigel | ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2025 |
publishDateSearch | 2025 |
publishDateSort | 2025 |
publisher | CRC Press LLC |
record_format | marc |
spelling | Gray, Douglas A. Verfasser aut The Art of Data Science A Practitioner's Guide 1st ed Milton CRC Press LLC 2025 ©2025 1 Online-Ressource (219 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Endorsements Page -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- About the Author -- Introduction -- Motivation -- Creating a Course and a Legacy -- Organization -- 1. Career Summary: On Becoming a Practitioner and Leader -- The "Key" to My Future -- Flying High (and Overseas) at AADT -- Data Down Under -- Movin' On Up -- Delivering Value -- Ride the Waves -- 2. The Dual Challenge of the Analytical Sciences Practitioner -- Introduction -- 3. Digital Transformation -- Introduction -- Observations and Foundational Experiences -- The Internet, Data, and Analytics in Digital Transformation -- The Why and How of Digital Transformation -- Digital Transformation: A Competitive Imperative -- 4. Advanced Analytics is Economically Transformational -- Introduction -- 5. Airworthy: American Airlines Heavy Maintenance Planning and Scheduling -- Introduction -- 6. Consulting Concepts Learned from Airworthy -- Introduction -- 7. A Modern Day Project Applying the Same Principles: Advanced Analytics Commodity Case -- Introduction -- 8. Right Tool, Right Place, Right Time (with Nader Kabbani) -- Introduction -- 9. Under Fire: Lessons from the Front - Revenue Management for Manufacturing -- Introduction -- 10. Analytics Nontechnical Skills -- Introduction -- What They Do Not Teach You in Your MS Data Science/ Business Analytics Program -- Three Common Reasons DS Projects Don't Get Implemented -- MBAs for Data Scientists (Expensive, but Worth It, in My Experience) -- Notes -- 11. Top 10 Analytics Leadership Skills (with Tom Davenport) -- Introduction -- Recruitment, Retention, People Development -- Generating Demand (Securing Projects by Domain Area) -- Relationship Building -- Understand the Business Domain (and Problem in Question) -- Change Management -- Project Management Communication Skills -- Planning, Budgeting, Administration, and P& -- L Management -- Practitioner Experience and Expertise -- Information Technology (IT) Experience and Expertise -- 12. Top 10 Reasons Analytical Sciences Projects Fail -- Introduction -- Why Data Science Projects Fail -- References -- Part 1: What's the Problem (That You're Trying to Solve)? -- Reference -- Part 2: Data, Data Everywhere ... But Not in One Location to Analyze -- Part 3: Misapplying the Model -- Part 4: Solving a Problem that is Not a Business Priority -- Part 5: Effective Communication -- Stories as Communication -- Part 6: Change Management -- Principles of Change Management -- Interactive Optimization -- Keys to Success -- Justification for Change -- Notes and References -- Part 7: Unrealistic Expectations -- Setting Business Value Benefits -- Part 8: Project Management -- The "Perfect" Project Management -- The Usual Suspects in PM -- Part 9: Excessive Focus on the Model, Technique, or Technology -- Part 10: Getting from Sandbox Model to Production System -- Failure Begets Success -- Conclusion -- Project Challenges -- Managing Change -- 13. Surrounded by Success -- Introduction -- 14. O.R. in 2048 -- Introduction -- Computing -- Models and Algorithms -- Software Tools -- People -- Conclusion -- References and Bibliography -- Index Author Doug Gray shares the most important lessons he has learned over the course of his 30+ year career in analytics and technology. Readers will witness the Analytical Sciences profession through the eye of a practitioner who has delivered solutions that generate hundreds of millions of dollars annually in business value Business analysts Management-Statistical methods Quantitative research Erscheint auch als Druck-Ausgabe Gray, Douglas A. The Art of Data Science Milton : CRC Press LLC,c2025 9781032816968 |
spellingShingle | Gray, Douglas A. The Art of Data Science A Practitioner's Guide Cover -- Endorsements Page -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- About the Author -- Introduction -- Motivation -- Creating a Course and a Legacy -- Organization -- 1. Career Summary: On Becoming a Practitioner and Leader -- The "Key" to My Future -- Flying High (and Overseas) at AADT -- Data Down Under -- Movin' On Up -- Delivering Value -- Ride the Waves -- 2. The Dual Challenge of the Analytical Sciences Practitioner -- Introduction -- 3. Digital Transformation -- Introduction -- Observations and Foundational Experiences -- The Internet, Data, and Analytics in Digital Transformation -- The Why and How of Digital Transformation -- Digital Transformation: A Competitive Imperative -- 4. Advanced Analytics is Economically Transformational -- Introduction -- 5. Airworthy: American Airlines Heavy Maintenance Planning and Scheduling -- Introduction -- 6. Consulting Concepts Learned from Airworthy -- Introduction -- 7. A Modern Day Project Applying the Same Principles: Advanced Analytics Commodity Case -- Introduction -- 8. Right Tool, Right Place, Right Time (with Nader Kabbani) -- Introduction -- 9. Under Fire: Lessons from the Front - Revenue Management for Manufacturing -- Introduction -- 10. Analytics Nontechnical Skills -- Introduction -- What They Do Not Teach You in Your MS Data Science/ Business Analytics Program -- Three Common Reasons DS Projects Don't Get Implemented -- MBAs for Data Scientists (Expensive, but Worth It, in My Experience) -- Notes -- 11. Top 10 Analytics Leadership Skills (with Tom Davenport) -- Introduction -- Recruitment, Retention, People Development -- Generating Demand (Securing Projects by Domain Area) -- Relationship Building -- Understand the Business Domain (and Problem in Question) -- Change Management -- Project Management Communication Skills -- Planning, Budgeting, Administration, and P& -- L Management -- Practitioner Experience and Expertise -- Information Technology (IT) Experience and Expertise -- 12. Top 10 Reasons Analytical Sciences Projects Fail -- Introduction -- Why Data Science Projects Fail -- References -- Part 1: What's the Problem (That You're Trying to Solve)? -- Reference -- Part 2: Data, Data Everywhere ... But Not in One Location to Analyze -- Part 3: Misapplying the Model -- Part 4: Solving a Problem that is Not a Business Priority -- Part 5: Effective Communication -- Stories as Communication -- Part 6: Change Management -- Principles of Change Management -- Interactive Optimization -- Keys to Success -- Justification for Change -- Notes and References -- Part 7: Unrealistic Expectations -- Setting Business Value Benefits -- Part 8: Project Management -- The "Perfect" Project Management -- The Usual Suspects in PM -- Part 9: Excessive Focus on the Model, Technique, or Technology -- Part 10: Getting from Sandbox Model to Production System -- Failure Begets Success -- Conclusion -- Project Challenges -- Managing Change -- 13. Surrounded by Success -- Introduction -- 14. O.R. in 2048 -- Introduction -- Computing -- Models and Algorithms -- Software Tools -- People -- Conclusion -- References and Bibliography -- Index Business analysts Management-Statistical methods Quantitative research |
title | The Art of Data Science A Practitioner's Guide |
title_auth | The Art of Data Science A Practitioner's Guide |
title_exact_search | The Art of Data Science A Practitioner's Guide |
title_full | The Art of Data Science A Practitioner's Guide |
title_fullStr | The Art of Data Science A Practitioner's Guide |
title_full_unstemmed | The Art of Data Science A Practitioner's Guide |
title_short | The Art of Data Science |
title_sort | the art of data science a practitioner s guide |
title_sub | A Practitioner's Guide |
topic | Business analysts Management-Statistical methods Quantitative research |
topic_facet | Business analysts Management-Statistical methods Quantitative research |
work_keys_str_mv | AT graydouglasa theartofdatascienceapractitionersguide |