Mathematics for Business Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Herndon, VA
Mercury Learning & Information
2023
|
Ausgabe: | 1st ed |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (377 Seiten) |
ISBN: | 9781683929369 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050174009 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250219s2023 xx o|||| 00||| eng d | ||
020 | |a 9781683929369 |9 978-1-68392-936-9 | ||
035 | |a (ZDB-30-PQE)EBC30960972 | ||
035 | |a (ZDB-30-PAD)EBC30960972 | ||
035 | |a (ZDB-89-EBL)EBL30960972 | ||
035 | |a (OCoLC)1415803841 | ||
035 | |a (DE-599)BVBBV050174009 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Turner, Paul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematics for Business Analysis |
250 | |a 1st ed | ||
264 | 1 | |a Herndon, VA |b Mercury Learning & Information |c 2023 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (377 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Sets, Numbers, and Algebra -- 1.1 Sets and Numbers -- Review Exercises - Section 1.1 -- 1.2 Rules of Algebra -- Commutative Property -- Associative Property -- Distributive Property -- Review Exercises - Section 1.2 -- 1.3 Complex Numbers and Hyperreal Numbers -- Complex Numbers -- Hyperreal Numbers -- Principle 1: The Extension Principle -- Principle 2: The Transfer Principle -- Principle 3: The Standard Part Principle -- Rules for Infinitesimal Numbers -- Rules for Infinite Numbers -- Review Exercises - Section 1.3 -- 1.4 Intervals -- Review Exercises - Section 1.4 -- 1.5 Expanding and Factorizing Mathematical Expressions -- Review Exercises - Section 1.5 -- 1.6 A Numerical Method for Finding Roots -- Review Exercises Section 1.6 -- Chapter 2: Lines, Curves, Functions, and Equations -- 2.1 The Cartesian Plane -- Review Exercises - Section 2.1 -- 2.2 Functions -- Review Exercises - Section 2.2 -- 2.3 Limits -- Review Exercises - Section 2.3 -- 2.4 Power Functions -- Review Exercises - Section 2.4 -- 2.5 Exponential and Logarithmic Functions -- Review Exercises - Section 2.5 -- 2.6 Polynomial Functions -- Review Exercises - Section 2.6 -- 2.7 Sine, Cosine, and Tangent Functions -- Review Exercises - Section 2.7 -- Chapter 3: Simultaneous Equations -- 3.1 Linear Equations -- Review Exercises - Section 3.1 -- 3.2 Systems of Linear Simultaneous Equations -- Review Exercises - Section 3.2 -- 3.3 Some Examples from Economics -- Review Exercises - Section 3.3 -- 3.4 Nonlinear Simultaneous Equations -- Review Exercises - Section 3.4 -- 3.5 Numerical Methods -- Review Exercises - Section 3.5 -- Chapter 4: Derivatives and Differentiation -- 4.1 Differential Calculus -- Review Exercises - Section 4.1 -- 4.2 Differentiation from First Principles | |
505 | 8 | |a Review Exercises - Section 4.2 -- 4.3 Rules for Differentiation -- Rule 1: Multiplication by a Constant -- Rule 2: Sum-Difference Rule -- Rule 3: The Product Rule -- Rule 4: The Quotient Rule -- Rule 5: The Power Function Rule -- Rule 6: The Chain Rule -- Rule 7: The Inverse Function Rule -- Generalization of the Power Function Rule -- Review Exercises - Section 4.3 -- 4.4 Some Economic Examples -- Review Exercises - Section 4.4 -- 4.5 Higher-Order Derivatives -- Review Exercises - Section 4.5 -- 4.6 Numerical Methods -- Review Exercises - Section 4.6 -- Chapter 5: Optimization -- 5.1 Identifying Critical Points -- Review Exercises - Section 5.1 -- 5.2 Some Economic Examples -- Review Exercises - Section 5.2 -- 5.3 Convexity and Concavity -- Review Exercises - Section 5.3 -- 5.4 Numerical Methods for Finding Turning Points -- Review Exercises - Section 5.4 -- Chapter 6: Optimization of Multivariable Functions -- 6.1 Multivariable Functions -- Review Exercises - Section 6.1 -- 6.2 Partial Derivatives -- Review Exercise - Section 6.2 -- 6.3 Differentials and the Total Derivative -- Review Exercises - Section 6.3 -- 6.4 Optimization with Multivariable Functions -- Review Exercises - Section 6.4 -- 6.5 Optimization with Constraints -- Review Exercises - Section 6.5 -- 6.6 Numerical Methods -- Review Exercises - Section 6.6 -- Chapter 7: Integration -- 7.1 Definite Integration -- Review Exercises - Section 7.1 -- 7.2 The Fundamental Theorem of Calculus -- Review Exercises - Section 7.2 -- 7.3 Integration by Substitution and by Parts -- Review Exercises - Section 7.3 -- 7.4 Some Economic Applications -- Review Exercises - Section 7.4 -- 7.5 Numerical Methods of Integration -- Review Exercises - Section 7.5 -- Chapter 8: Matrices -- 8.1 Matrix Algebra -- Addition or Subtraction of Matrices -- Matrix Transposition -- Scalar Multiplication | |
505 | 8 | |a Vector Multiplication -- Matrix Multiplication -- Review Exercises - Section 8.1 -- 8.2 Determinants -- Review Exercises - Section 8.2 -- 8.3 Matrix Inversion -- Review Exercises - Section 8.3 -- 8.4 Solving Simultaneous Equations with Matrices -- Review Exercises - Section 8.4 -- 8.5 Eigenvalues and Eigenvectors -- Review Exercises - Section 8.5 -- Chapter 9: First-Order Differential Equations -- 9.1 Separable Differential Equations -- Review Exercises - Section 9.1 -- 9.2 First-order Linear Differential Equations with Constant Coefficients -- Review Exercises - Section 9.2 -- 9.3 Solutions Using an Integrating Factor -- Review Exercises - Section 9.3 -- 9.4 The Method of Undetermined Coefficients -- Review Exercises - Section 9.4 -- 9.5 Numerical Methods -- Review Exercises - Section 9.5 -- 9.6 Some Economic Examples -- Review Exercises - Section 9.6 -- Chapter 10: Second-Order Differential Equations -- 10.1 Homogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.1 -- 10.2 Initial Value Problems with Second-Order Differential Equations -- Review Exercises - Section 10.2 -- 10.3 Nonhomogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.3 -- 10.4 Numerical Solution for Second-Order Equations -- Review Exercises - Section 10.4 -- Appendix: The Principle of Superposition -- Appendix: Derivation of the Complementary Function When the Roots are Complex -- Chapter 11: Difference Equations -- 11.1 First-Order Difference Equations -- Review Exercises - Section 11.1 -- 11.2 Second-Order Difference Equations -- Review Exercises - Section 11.2 -- 11.3 Solution by Backward Substitution -- Review Exercises - Section 11.3 -- 11.4 Boundary Conditions and Expectations -- Review Exercises - Section 11.4 -- Appendix: Solution for the Case of Complex Roots -- Appendix A: Coding in Python | |
505 | 8 | |a Appendix B: Odd Numbered Exercises Answers -- Index | |
700 | 1 | |a Wood, Justine |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Turner, Paul |t Mathematics for Business Analysis |d Herndon, VA : Mercury Learning & Information,c2023 |z 9781683929376 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035509889 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30960972 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508693819949056 |
---|---|
adam_text | |
any_adam_object | |
author | Turner, Paul |
author_facet | Turner, Paul |
author_role | aut |
author_sort | Turner, Paul |
author_variant | p t pt |
building | Verbundindex |
bvnumber | BV050174009 |
contents | Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Sets, Numbers, and Algebra -- 1.1 Sets and Numbers -- Review Exercises - Section 1.1 -- 1.2 Rules of Algebra -- Commutative Property -- Associative Property -- Distributive Property -- Review Exercises - Section 1.2 -- 1.3 Complex Numbers and Hyperreal Numbers -- Complex Numbers -- Hyperreal Numbers -- Principle 1: The Extension Principle -- Principle 2: The Transfer Principle -- Principle 3: The Standard Part Principle -- Rules for Infinitesimal Numbers -- Rules for Infinite Numbers -- Review Exercises - Section 1.3 -- 1.4 Intervals -- Review Exercises - Section 1.4 -- 1.5 Expanding and Factorizing Mathematical Expressions -- Review Exercises - Section 1.5 -- 1.6 A Numerical Method for Finding Roots -- Review Exercises Section 1.6 -- Chapter 2: Lines, Curves, Functions, and Equations -- 2.1 The Cartesian Plane -- Review Exercises - Section 2.1 -- 2.2 Functions -- Review Exercises - Section 2.2 -- 2.3 Limits -- Review Exercises - Section 2.3 -- 2.4 Power Functions -- Review Exercises - Section 2.4 -- 2.5 Exponential and Logarithmic Functions -- Review Exercises - Section 2.5 -- 2.6 Polynomial Functions -- Review Exercises - Section 2.6 -- 2.7 Sine, Cosine, and Tangent Functions -- Review Exercises - Section 2.7 -- Chapter 3: Simultaneous Equations -- 3.1 Linear Equations -- Review Exercises - Section 3.1 -- 3.2 Systems of Linear Simultaneous Equations -- Review Exercises - Section 3.2 -- 3.3 Some Examples from Economics -- Review Exercises - Section 3.3 -- 3.4 Nonlinear Simultaneous Equations -- Review Exercises - Section 3.4 -- 3.5 Numerical Methods -- Review Exercises - Section 3.5 -- Chapter 4: Derivatives and Differentiation -- 4.1 Differential Calculus -- Review Exercises - Section 4.1 -- 4.2 Differentiation from First Principles Review Exercises - Section 4.2 -- 4.3 Rules for Differentiation -- Rule 1: Multiplication by a Constant -- Rule 2: Sum-Difference Rule -- Rule 3: The Product Rule -- Rule 4: The Quotient Rule -- Rule 5: The Power Function Rule -- Rule 6: The Chain Rule -- Rule 7: The Inverse Function Rule -- Generalization of the Power Function Rule -- Review Exercises - Section 4.3 -- 4.4 Some Economic Examples -- Review Exercises - Section 4.4 -- 4.5 Higher-Order Derivatives -- Review Exercises - Section 4.5 -- 4.6 Numerical Methods -- Review Exercises - Section 4.6 -- Chapter 5: Optimization -- 5.1 Identifying Critical Points -- Review Exercises - Section 5.1 -- 5.2 Some Economic Examples -- Review Exercises - Section 5.2 -- 5.3 Convexity and Concavity -- Review Exercises - Section 5.3 -- 5.4 Numerical Methods for Finding Turning Points -- Review Exercises - Section 5.4 -- Chapter 6: Optimization of Multivariable Functions -- 6.1 Multivariable Functions -- Review Exercises - Section 6.1 -- 6.2 Partial Derivatives -- Review Exercise - Section 6.2 -- 6.3 Differentials and the Total Derivative -- Review Exercises - Section 6.3 -- 6.4 Optimization with Multivariable Functions -- Review Exercises - Section 6.4 -- 6.5 Optimization with Constraints -- Review Exercises - Section 6.5 -- 6.6 Numerical Methods -- Review Exercises - Section 6.6 -- Chapter 7: Integration -- 7.1 Definite Integration -- Review Exercises - Section 7.1 -- 7.2 The Fundamental Theorem of Calculus -- Review Exercises - Section 7.2 -- 7.3 Integration by Substitution and by Parts -- Review Exercises - Section 7.3 -- 7.4 Some Economic Applications -- Review Exercises - Section 7.4 -- 7.5 Numerical Methods of Integration -- Review Exercises - Section 7.5 -- Chapter 8: Matrices -- 8.1 Matrix Algebra -- Addition or Subtraction of Matrices -- Matrix Transposition -- Scalar Multiplication Vector Multiplication -- Matrix Multiplication -- Review Exercises - Section 8.1 -- 8.2 Determinants -- Review Exercises - Section 8.2 -- 8.3 Matrix Inversion -- Review Exercises - Section 8.3 -- 8.4 Solving Simultaneous Equations with Matrices -- Review Exercises - Section 8.4 -- 8.5 Eigenvalues and Eigenvectors -- Review Exercises - Section 8.5 -- Chapter 9: First-Order Differential Equations -- 9.1 Separable Differential Equations -- Review Exercises - Section 9.1 -- 9.2 First-order Linear Differential Equations with Constant Coefficients -- Review Exercises - Section 9.2 -- 9.3 Solutions Using an Integrating Factor -- Review Exercises - Section 9.3 -- 9.4 The Method of Undetermined Coefficients -- Review Exercises - Section 9.4 -- 9.5 Numerical Methods -- Review Exercises - Section 9.5 -- 9.6 Some Economic Examples -- Review Exercises - Section 9.6 -- Chapter 10: Second-Order Differential Equations -- 10.1 Homogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.1 -- 10.2 Initial Value Problems with Second-Order Differential Equations -- Review Exercises - Section 10.2 -- 10.3 Nonhomogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.3 -- 10.4 Numerical Solution for Second-Order Equations -- Review Exercises - Section 10.4 -- Appendix: The Principle of Superposition -- Appendix: Derivation of the Complementary Function When the Roots are Complex -- Chapter 11: Difference Equations -- 11.1 First-Order Difference Equations -- Review Exercises - Section 11.1 -- 11.2 Second-Order Difference Equations -- Review Exercises - Section 11.2 -- 11.3 Solution by Backward Substitution -- Review Exercises - Section 11.3 -- 11.4 Boundary Conditions and Expectations -- Review Exercises - Section 11.4 -- Appendix: Solution for the Case of Complex Roots -- Appendix A: Coding in Python Appendix B: Odd Numbered Exercises Answers -- Index |
ctrlnum | (ZDB-30-PQE)EBC30960972 (ZDB-30-PAD)EBC30960972 (ZDB-89-EBL)EBL30960972 (OCoLC)1415803841 (DE-599)BVBBV050174009 |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050174009</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250219s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683929369</subfield><subfield code="9">978-1-68392-936-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC30960972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC30960972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL30960972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1415803841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050174009</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turner, Paul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics for Business Analysis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Herndon, VA</subfield><subfield code="b">Mercury Learning & Information</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (377 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Sets, Numbers, and Algebra -- 1.1 Sets and Numbers -- Review Exercises - Section 1.1 -- 1.2 Rules of Algebra -- Commutative Property -- Associative Property -- Distributive Property -- Review Exercises - Section 1.2 -- 1.3 Complex Numbers and Hyperreal Numbers -- Complex Numbers -- Hyperreal Numbers -- Principle 1: The Extension Principle -- Principle 2: The Transfer Principle -- Principle 3: The Standard Part Principle -- Rules for Infinitesimal Numbers -- Rules for Infinite Numbers -- Review Exercises - Section 1.3 -- 1.4 Intervals -- Review Exercises - Section 1.4 -- 1.5 Expanding and Factorizing Mathematical Expressions -- Review Exercises - Section 1.5 -- 1.6 A Numerical Method for Finding Roots -- Review Exercises Section 1.6 -- Chapter 2: Lines, Curves, Functions, and Equations -- 2.1 The Cartesian Plane -- Review Exercises - Section 2.1 -- 2.2 Functions -- Review Exercises - Section 2.2 -- 2.3 Limits -- Review Exercises - Section 2.3 -- 2.4 Power Functions -- Review Exercises - Section 2.4 -- 2.5 Exponential and Logarithmic Functions -- Review Exercises - Section 2.5 -- 2.6 Polynomial Functions -- Review Exercises - Section 2.6 -- 2.7 Sine, Cosine, and Tangent Functions -- Review Exercises - Section 2.7 -- Chapter 3: Simultaneous Equations -- 3.1 Linear Equations -- Review Exercises - Section 3.1 -- 3.2 Systems of Linear Simultaneous Equations -- Review Exercises - Section 3.2 -- 3.3 Some Examples from Economics -- Review Exercises - Section 3.3 -- 3.4 Nonlinear Simultaneous Equations -- Review Exercises - Section 3.4 -- 3.5 Numerical Methods -- Review Exercises - Section 3.5 -- Chapter 4: Derivatives and Differentiation -- 4.1 Differential Calculus -- Review Exercises - Section 4.1 -- 4.2 Differentiation from First Principles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Review Exercises - Section 4.2 -- 4.3 Rules for Differentiation -- Rule 1: Multiplication by a Constant -- Rule 2: Sum-Difference Rule -- Rule 3: The Product Rule -- Rule 4: The Quotient Rule -- Rule 5: The Power Function Rule -- Rule 6: The Chain Rule -- Rule 7: The Inverse Function Rule -- Generalization of the Power Function Rule -- Review Exercises - Section 4.3 -- 4.4 Some Economic Examples -- Review Exercises - Section 4.4 -- 4.5 Higher-Order Derivatives -- Review Exercises - Section 4.5 -- 4.6 Numerical Methods -- Review Exercises - Section 4.6 -- Chapter 5: Optimization -- 5.1 Identifying Critical Points -- Review Exercises - Section 5.1 -- 5.2 Some Economic Examples -- Review Exercises - Section 5.2 -- 5.3 Convexity and Concavity -- Review Exercises - Section 5.3 -- 5.4 Numerical Methods for Finding Turning Points -- Review Exercises - Section 5.4 -- Chapter 6: Optimization of Multivariable Functions -- 6.1 Multivariable Functions -- Review Exercises - Section 6.1 -- 6.2 Partial Derivatives -- Review Exercise - Section 6.2 -- 6.3 Differentials and the Total Derivative -- Review Exercises - Section 6.3 -- 6.4 Optimization with Multivariable Functions -- Review Exercises - Section 6.4 -- 6.5 Optimization with Constraints -- Review Exercises - Section 6.5 -- 6.6 Numerical Methods -- Review Exercises - Section 6.6 -- Chapter 7: Integration -- 7.1 Definite Integration -- Review Exercises - Section 7.1 -- 7.2 The Fundamental Theorem of Calculus -- Review Exercises - Section 7.2 -- 7.3 Integration by Substitution and by Parts -- Review Exercises - Section 7.3 -- 7.4 Some Economic Applications -- Review Exercises - Section 7.4 -- 7.5 Numerical Methods of Integration -- Review Exercises - Section 7.5 -- Chapter 8: Matrices -- 8.1 Matrix Algebra -- Addition or Subtraction of Matrices -- Matrix Transposition -- Scalar Multiplication</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Vector Multiplication -- Matrix Multiplication -- Review Exercises - Section 8.1 -- 8.2 Determinants -- Review Exercises - Section 8.2 -- 8.3 Matrix Inversion -- Review Exercises - Section 8.3 -- 8.4 Solving Simultaneous Equations with Matrices -- Review Exercises - Section 8.4 -- 8.5 Eigenvalues and Eigenvectors -- Review Exercises - Section 8.5 -- Chapter 9: First-Order Differential Equations -- 9.1 Separable Differential Equations -- Review Exercises - Section 9.1 -- 9.2 First-order Linear Differential Equations with Constant Coefficients -- Review Exercises - Section 9.2 -- 9.3 Solutions Using an Integrating Factor -- Review Exercises - Section 9.3 -- 9.4 The Method of Undetermined Coefficients -- Review Exercises - Section 9.4 -- 9.5 Numerical Methods -- Review Exercises - Section 9.5 -- 9.6 Some Economic Examples -- Review Exercises - Section 9.6 -- Chapter 10: Second-Order Differential Equations -- 10.1 Homogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.1 -- 10.2 Initial Value Problems with Second-Order Differential Equations -- Review Exercises - Section 10.2 -- 10.3 Nonhomogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.3 -- 10.4 Numerical Solution for Second-Order Equations -- Review Exercises - Section 10.4 -- Appendix: The Principle of Superposition -- Appendix: Derivation of the Complementary Function When the Roots are Complex -- Chapter 11: Difference Equations -- 11.1 First-Order Difference Equations -- Review Exercises - Section 11.1 -- 11.2 Second-Order Difference Equations -- Review Exercises - Section 11.2 -- 11.3 Solution by Backward Substitution -- Review Exercises - Section 11.3 -- 11.4 Boundary Conditions and Expectations -- Review Exercises - Section 11.4 -- Appendix: Solution for the Case of Complex Roots -- Appendix A: Coding in Python</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix B: Odd Numbered Exercises Answers -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood, Justine</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Turner, Paul</subfield><subfield code="t">Mathematics for Business Analysis</subfield><subfield code="d">Herndon, VA : Mercury Learning & Information,c2023</subfield><subfield code="z">9781683929376</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035509889</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30960972</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050174009 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:44:41Z |
institution | BVB |
isbn | 9781683929369 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035509889 |
oclc_num | 1415803841 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (377 Seiten) |
psigel | ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Mercury Learning & Information |
record_format | marc |
spelling | Turner, Paul Verfasser aut Mathematics for Business Analysis 1st ed Herndon, VA Mercury Learning & Information 2023 ©2023 1 Online-Ressource (377 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Sets, Numbers, and Algebra -- 1.1 Sets and Numbers -- Review Exercises - Section 1.1 -- 1.2 Rules of Algebra -- Commutative Property -- Associative Property -- Distributive Property -- Review Exercises - Section 1.2 -- 1.3 Complex Numbers and Hyperreal Numbers -- Complex Numbers -- Hyperreal Numbers -- Principle 1: The Extension Principle -- Principle 2: The Transfer Principle -- Principle 3: The Standard Part Principle -- Rules for Infinitesimal Numbers -- Rules for Infinite Numbers -- Review Exercises - Section 1.3 -- 1.4 Intervals -- Review Exercises - Section 1.4 -- 1.5 Expanding and Factorizing Mathematical Expressions -- Review Exercises - Section 1.5 -- 1.6 A Numerical Method for Finding Roots -- Review Exercises Section 1.6 -- Chapter 2: Lines, Curves, Functions, and Equations -- 2.1 The Cartesian Plane -- Review Exercises - Section 2.1 -- 2.2 Functions -- Review Exercises - Section 2.2 -- 2.3 Limits -- Review Exercises - Section 2.3 -- 2.4 Power Functions -- Review Exercises - Section 2.4 -- 2.5 Exponential and Logarithmic Functions -- Review Exercises - Section 2.5 -- 2.6 Polynomial Functions -- Review Exercises - Section 2.6 -- 2.7 Sine, Cosine, and Tangent Functions -- Review Exercises - Section 2.7 -- Chapter 3: Simultaneous Equations -- 3.1 Linear Equations -- Review Exercises - Section 3.1 -- 3.2 Systems of Linear Simultaneous Equations -- Review Exercises - Section 3.2 -- 3.3 Some Examples from Economics -- Review Exercises - Section 3.3 -- 3.4 Nonlinear Simultaneous Equations -- Review Exercises - Section 3.4 -- 3.5 Numerical Methods -- Review Exercises - Section 3.5 -- Chapter 4: Derivatives and Differentiation -- 4.1 Differential Calculus -- Review Exercises - Section 4.1 -- 4.2 Differentiation from First Principles Review Exercises - Section 4.2 -- 4.3 Rules for Differentiation -- Rule 1: Multiplication by a Constant -- Rule 2: Sum-Difference Rule -- Rule 3: The Product Rule -- Rule 4: The Quotient Rule -- Rule 5: The Power Function Rule -- Rule 6: The Chain Rule -- Rule 7: The Inverse Function Rule -- Generalization of the Power Function Rule -- Review Exercises - Section 4.3 -- 4.4 Some Economic Examples -- Review Exercises - Section 4.4 -- 4.5 Higher-Order Derivatives -- Review Exercises - Section 4.5 -- 4.6 Numerical Methods -- Review Exercises - Section 4.6 -- Chapter 5: Optimization -- 5.1 Identifying Critical Points -- Review Exercises - Section 5.1 -- 5.2 Some Economic Examples -- Review Exercises - Section 5.2 -- 5.3 Convexity and Concavity -- Review Exercises - Section 5.3 -- 5.4 Numerical Methods for Finding Turning Points -- Review Exercises - Section 5.4 -- Chapter 6: Optimization of Multivariable Functions -- 6.1 Multivariable Functions -- Review Exercises - Section 6.1 -- 6.2 Partial Derivatives -- Review Exercise - Section 6.2 -- 6.3 Differentials and the Total Derivative -- Review Exercises - Section 6.3 -- 6.4 Optimization with Multivariable Functions -- Review Exercises - Section 6.4 -- 6.5 Optimization with Constraints -- Review Exercises - Section 6.5 -- 6.6 Numerical Methods -- Review Exercises - Section 6.6 -- Chapter 7: Integration -- 7.1 Definite Integration -- Review Exercises - Section 7.1 -- 7.2 The Fundamental Theorem of Calculus -- Review Exercises - Section 7.2 -- 7.3 Integration by Substitution and by Parts -- Review Exercises - Section 7.3 -- 7.4 Some Economic Applications -- Review Exercises - Section 7.4 -- 7.5 Numerical Methods of Integration -- Review Exercises - Section 7.5 -- Chapter 8: Matrices -- 8.1 Matrix Algebra -- Addition or Subtraction of Matrices -- Matrix Transposition -- Scalar Multiplication Vector Multiplication -- Matrix Multiplication -- Review Exercises - Section 8.1 -- 8.2 Determinants -- Review Exercises - Section 8.2 -- 8.3 Matrix Inversion -- Review Exercises - Section 8.3 -- 8.4 Solving Simultaneous Equations with Matrices -- Review Exercises - Section 8.4 -- 8.5 Eigenvalues and Eigenvectors -- Review Exercises - Section 8.5 -- Chapter 9: First-Order Differential Equations -- 9.1 Separable Differential Equations -- Review Exercises - Section 9.1 -- 9.2 First-order Linear Differential Equations with Constant Coefficients -- Review Exercises - Section 9.2 -- 9.3 Solutions Using an Integrating Factor -- Review Exercises - Section 9.3 -- 9.4 The Method of Undetermined Coefficients -- Review Exercises - Section 9.4 -- 9.5 Numerical Methods -- Review Exercises - Section 9.5 -- 9.6 Some Economic Examples -- Review Exercises - Section 9.6 -- Chapter 10: Second-Order Differential Equations -- 10.1 Homogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.1 -- 10.2 Initial Value Problems with Second-Order Differential Equations -- Review Exercises - Section 10.2 -- 10.3 Nonhomogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.3 -- 10.4 Numerical Solution for Second-Order Equations -- Review Exercises - Section 10.4 -- Appendix: The Principle of Superposition -- Appendix: Derivation of the Complementary Function When the Roots are Complex -- Chapter 11: Difference Equations -- 11.1 First-Order Difference Equations -- Review Exercises - Section 11.1 -- 11.2 Second-Order Difference Equations -- Review Exercises - Section 11.2 -- 11.3 Solution by Backward Substitution -- Review Exercises - Section 11.3 -- 11.4 Boundary Conditions and Expectations -- Review Exercises - Section 11.4 -- Appendix: Solution for the Case of Complex Roots -- Appendix A: Coding in Python Appendix B: Odd Numbered Exercises Answers -- Index Wood, Justine Sonstige oth Erscheint auch als Druck-Ausgabe Turner, Paul Mathematics for Business Analysis Herndon, VA : Mercury Learning & Information,c2023 9781683929376 |
spellingShingle | Turner, Paul Mathematics for Business Analysis Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Sets, Numbers, and Algebra -- 1.1 Sets and Numbers -- Review Exercises - Section 1.1 -- 1.2 Rules of Algebra -- Commutative Property -- Associative Property -- Distributive Property -- Review Exercises - Section 1.2 -- 1.3 Complex Numbers and Hyperreal Numbers -- Complex Numbers -- Hyperreal Numbers -- Principle 1: The Extension Principle -- Principle 2: The Transfer Principle -- Principle 3: The Standard Part Principle -- Rules for Infinitesimal Numbers -- Rules for Infinite Numbers -- Review Exercises - Section 1.3 -- 1.4 Intervals -- Review Exercises - Section 1.4 -- 1.5 Expanding and Factorizing Mathematical Expressions -- Review Exercises - Section 1.5 -- 1.6 A Numerical Method for Finding Roots -- Review Exercises Section 1.6 -- Chapter 2: Lines, Curves, Functions, and Equations -- 2.1 The Cartesian Plane -- Review Exercises - Section 2.1 -- 2.2 Functions -- Review Exercises - Section 2.2 -- 2.3 Limits -- Review Exercises - Section 2.3 -- 2.4 Power Functions -- Review Exercises - Section 2.4 -- 2.5 Exponential and Logarithmic Functions -- Review Exercises - Section 2.5 -- 2.6 Polynomial Functions -- Review Exercises - Section 2.6 -- 2.7 Sine, Cosine, and Tangent Functions -- Review Exercises - Section 2.7 -- Chapter 3: Simultaneous Equations -- 3.1 Linear Equations -- Review Exercises - Section 3.1 -- 3.2 Systems of Linear Simultaneous Equations -- Review Exercises - Section 3.2 -- 3.3 Some Examples from Economics -- Review Exercises - Section 3.3 -- 3.4 Nonlinear Simultaneous Equations -- Review Exercises - Section 3.4 -- 3.5 Numerical Methods -- Review Exercises - Section 3.5 -- Chapter 4: Derivatives and Differentiation -- 4.1 Differential Calculus -- Review Exercises - Section 4.1 -- 4.2 Differentiation from First Principles Review Exercises - Section 4.2 -- 4.3 Rules for Differentiation -- Rule 1: Multiplication by a Constant -- Rule 2: Sum-Difference Rule -- Rule 3: The Product Rule -- Rule 4: The Quotient Rule -- Rule 5: The Power Function Rule -- Rule 6: The Chain Rule -- Rule 7: The Inverse Function Rule -- Generalization of the Power Function Rule -- Review Exercises - Section 4.3 -- 4.4 Some Economic Examples -- Review Exercises - Section 4.4 -- 4.5 Higher-Order Derivatives -- Review Exercises - Section 4.5 -- 4.6 Numerical Methods -- Review Exercises - Section 4.6 -- Chapter 5: Optimization -- 5.1 Identifying Critical Points -- Review Exercises - Section 5.1 -- 5.2 Some Economic Examples -- Review Exercises - Section 5.2 -- 5.3 Convexity and Concavity -- Review Exercises - Section 5.3 -- 5.4 Numerical Methods for Finding Turning Points -- Review Exercises - Section 5.4 -- Chapter 6: Optimization of Multivariable Functions -- 6.1 Multivariable Functions -- Review Exercises - Section 6.1 -- 6.2 Partial Derivatives -- Review Exercise - Section 6.2 -- 6.3 Differentials and the Total Derivative -- Review Exercises - Section 6.3 -- 6.4 Optimization with Multivariable Functions -- Review Exercises - Section 6.4 -- 6.5 Optimization with Constraints -- Review Exercises - Section 6.5 -- 6.6 Numerical Methods -- Review Exercises - Section 6.6 -- Chapter 7: Integration -- 7.1 Definite Integration -- Review Exercises - Section 7.1 -- 7.2 The Fundamental Theorem of Calculus -- Review Exercises - Section 7.2 -- 7.3 Integration by Substitution and by Parts -- Review Exercises - Section 7.3 -- 7.4 Some Economic Applications -- Review Exercises - Section 7.4 -- 7.5 Numerical Methods of Integration -- Review Exercises - Section 7.5 -- Chapter 8: Matrices -- 8.1 Matrix Algebra -- Addition or Subtraction of Matrices -- Matrix Transposition -- Scalar Multiplication Vector Multiplication -- Matrix Multiplication -- Review Exercises - Section 8.1 -- 8.2 Determinants -- Review Exercises - Section 8.2 -- 8.3 Matrix Inversion -- Review Exercises - Section 8.3 -- 8.4 Solving Simultaneous Equations with Matrices -- Review Exercises - Section 8.4 -- 8.5 Eigenvalues and Eigenvectors -- Review Exercises - Section 8.5 -- Chapter 9: First-Order Differential Equations -- 9.1 Separable Differential Equations -- Review Exercises - Section 9.1 -- 9.2 First-order Linear Differential Equations with Constant Coefficients -- Review Exercises - Section 9.2 -- 9.3 Solutions Using an Integrating Factor -- Review Exercises - Section 9.3 -- 9.4 The Method of Undetermined Coefficients -- Review Exercises - Section 9.4 -- 9.5 Numerical Methods -- Review Exercises - Section 9.5 -- 9.6 Some Economic Examples -- Review Exercises - Section 9.6 -- Chapter 10: Second-Order Differential Equations -- 10.1 Homogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.1 -- 10.2 Initial Value Problems with Second-Order Differential Equations -- Review Exercises - Section 10.2 -- 10.3 Nonhomogeneous Second-Order Linear Differential Equations -- Review Exercises - Section 10.3 -- 10.4 Numerical Solution for Second-Order Equations -- Review Exercises - Section 10.4 -- Appendix: The Principle of Superposition -- Appendix: Derivation of the Complementary Function When the Roots are Complex -- Chapter 11: Difference Equations -- 11.1 First-Order Difference Equations -- Review Exercises - Section 11.1 -- 11.2 Second-Order Difference Equations -- Review Exercises - Section 11.2 -- 11.3 Solution by Backward Substitution -- Review Exercises - Section 11.3 -- 11.4 Boundary Conditions and Expectations -- Review Exercises - Section 11.4 -- Appendix: Solution for the Case of Complex Roots -- Appendix A: Coding in Python Appendix B: Odd Numbered Exercises Answers -- Index |
title | Mathematics for Business Analysis |
title_auth | Mathematics for Business Analysis |
title_exact_search | Mathematics for Business Analysis |
title_full | Mathematics for Business Analysis |
title_fullStr | Mathematics for Business Analysis |
title_full_unstemmed | Mathematics for Business Analysis |
title_short | Mathematics for Business Analysis |
title_sort | mathematics for business analysis |
work_keys_str_mv | AT turnerpaul mathematicsforbusinessanalysis AT woodjustine mathematicsforbusinessanalysis |