Simulating Fourier Optics Using Mathematica:
This book introduces the reader to many aspects of Fourier optics, using Mathematica as a simulation tool. A brief discussion of Mathematica’s symbolic and numerical computation capabilities is introduced. Starting from the wave equation, several simulations of Fresnel and Fraunhofer diffraction pro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bellingham
SPIE Press
[2024]
|
Online-Zugang: | DE-29 URL des Erstveröffentlichers |
Zusammenfassung: | This book introduces the reader to many aspects of Fourier optics, using Mathematica as a simulation tool. A brief discussion of Mathematica’s symbolic and numerical computation capabilities is introduced. Starting from the wave equation, several simulations of Fresnel and Fraunhofer diffraction problems are treated symbolically. Diffraction by an arbitrary linear optical system using ABCD matrices includes several symbolic examples. Recognizing that many diffraction problems cannot be solved symbolically, the discrete Fourier transform (DFT) is introduced and used to calculate many diffraction problems numerically. Three different numerical methods are used: numerical convolution, the Fresnel transform, and the Fresnel transfer function, with examples for each. Simulations of imaging with both coherent and incoherent light are covered both symbolically and numerically. Simulations of Gabor holography, Leith–Upatnieks holography, and phase-stepping holography are treated numerically. Finally, simulations of spatial filtering by manipulating the Fourier spectrum of an object are presented. |
Beschreibung: | 1 Online-Ressource (vi, 103 Seiten) |
ISBN: | 9781510682375 |
DOI: | 10.1117/3.100316 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050161840 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250211s2024 xx o|||| 00||| eng d | ||
020 | |a 9781510682375 |c pdf |9 978-1-5106-8237-5 | ||
024 | 7 | |a 10.1117/3.100316 |2 doi | |
035 | |a (ZDB-50-SPI)9781510682375 | ||
035 | |a (DE-599)BVBBV050161840 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 | ||
100 | 1 | |a Goodman, Joseph W. |d 1936- |e Verfasser |0 (DE-588)138261547 |4 aut | |
245 | 1 | 0 | |a Simulating Fourier Optics Using Mathematica |c Joseph W. Goodman |
246 | 1 | 3 | |a Simulating Fourier Optics Using Mathematica |
264 | 1 | |a Bellingham |b SPIE Press |c [2024] | |
300 | |a 1 Online-Ressource (vi, 103 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This book introduces the reader to many aspects of Fourier optics, using Mathematica as a simulation tool. A brief discussion of Mathematica’s symbolic and numerical computation capabilities is introduced. Starting from the wave equation, several simulations of Fresnel and Fraunhofer diffraction problems are treated symbolically. Diffraction by an arbitrary linear optical system using ABCD matrices includes several symbolic examples. Recognizing that many diffraction problems cannot be solved symbolically, the discrete Fourier transform (DFT) is introduced and used to calculate many diffraction problems numerically. Three different numerical methods are used: numerical convolution, the Fresnel transform, and the Fresnel transfer function, with examples for each. Simulations of imaging with both coherent and incoherent light are covered both symbolically and numerically. Simulations of Gabor holography, Leith–Upatnieks holography, and phase-stepping holography are treated numerically. Finally, simulations of spatial filtering by manipulating the Fourier spectrum of an object are presented. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781510682368 |
856 | 4 | 0 | |u https://doi.org/10.1117/3.100316 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-50-SPI | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035497937 | |
966 | e | |u https://doi.org/10.1117/3.100316 |l DE-29 |p ZDB-50-SPI |q UER_Paketkauf_2025 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1823758565984174080 |
---|---|
adam_text | |
any_adam_object | |
author | Goodman, Joseph W. 1936- |
author_GND | (DE-588)138261547 |
author_facet | Goodman, Joseph W. 1936- |
author_role | aut |
author_sort | Goodman, Joseph W. 1936- |
author_variant | j w g jw jwg |
building | Verbundindex |
bvnumber | BV050161840 |
collection | ZDB-50-SPI |
ctrlnum | (ZDB-50-SPI)9781510682375 (DE-599)BVBBV050161840 |
doi_str_mv | 10.1117/3.100316 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050161840</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250211s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781510682375</subfield><subfield code="c">pdf</subfield><subfield code="9">978-1-5106-8237-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1117/3.100316</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-50-SPI)9781510682375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050161840</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goodman, Joseph W.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138261547</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulating Fourier Optics Using Mathematica</subfield><subfield code="c">Joseph W. Goodman</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Simulating Fourier Optics Using Mathematica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bellingham</subfield><subfield code="b">SPIE Press</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 103 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book introduces the reader to many aspects of Fourier optics, using Mathematica as a simulation tool. A brief discussion of Mathematica’s symbolic and numerical computation capabilities is introduced. Starting from the wave equation, several simulations of Fresnel and Fraunhofer diffraction problems are treated symbolically. Diffraction by an arbitrary linear optical system using ABCD matrices includes several symbolic examples. Recognizing that many diffraction problems cannot be solved symbolically, the discrete Fourier transform (DFT) is introduced and used to calculate many diffraction problems numerically. Three different numerical methods are used: numerical convolution, the Fresnel transform, and the Fresnel transfer function, with examples for each. Simulations of imaging with both coherent and incoherent light are covered both symbolically and numerically. Simulations of Gabor holography, Leith–Upatnieks holography, and phase-stepping holography are treated numerically. Finally, simulations of spatial filtering by manipulating the Fourier spectrum of an object are presented.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781510682368</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1117/3.100316</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-50-SPI</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035497937</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1117/3.100316</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-50-SPI</subfield><subfield code="q">UER_Paketkauf_2025</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050161840 |
illustrated | Not Illustrated |
indexdate | 2025-02-11T11:01:43Z |
institution | BVB |
isbn | 9781510682375 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035497937 |
open_access_boolean | |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource (vi, 103 Seiten) |
psigel | ZDB-50-SPI ZDB-50-SPI UER_Paketkauf_2025 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | SPIE Press |
record_format | marc |
spelling | Goodman, Joseph W. 1936- Verfasser (DE-588)138261547 aut Simulating Fourier Optics Using Mathematica Joseph W. Goodman Simulating Fourier Optics Using Mathematica Bellingham SPIE Press [2024] 1 Online-Ressource (vi, 103 Seiten) txt rdacontent c rdamedia cr rdacarrier This book introduces the reader to many aspects of Fourier optics, using Mathematica as a simulation tool. A brief discussion of Mathematica’s symbolic and numerical computation capabilities is introduced. Starting from the wave equation, several simulations of Fresnel and Fraunhofer diffraction problems are treated symbolically. Diffraction by an arbitrary linear optical system using ABCD matrices includes several symbolic examples. Recognizing that many diffraction problems cannot be solved symbolically, the discrete Fourier transform (DFT) is introduced and used to calculate many diffraction problems numerically. Three different numerical methods are used: numerical convolution, the Fresnel transform, and the Fresnel transfer function, with examples for each. Simulations of imaging with both coherent and incoherent light are covered both symbolically and numerically. Simulations of Gabor holography, Leith–Upatnieks holography, and phase-stepping holography are treated numerically. Finally, simulations of spatial filtering by manipulating the Fourier spectrum of an object are presented. Erscheint auch als Druck-Ausgabe 9781510682368 https://doi.org/10.1117/3.100316 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Goodman, Joseph W. 1936- Simulating Fourier Optics Using Mathematica |
title | Simulating Fourier Optics Using Mathematica |
title_alt | Simulating Fourier Optics Using Mathematica |
title_auth | Simulating Fourier Optics Using Mathematica |
title_exact_search | Simulating Fourier Optics Using Mathematica |
title_full | Simulating Fourier Optics Using Mathematica Joseph W. Goodman |
title_fullStr | Simulating Fourier Optics Using Mathematica Joseph W. Goodman |
title_full_unstemmed | Simulating Fourier Optics Using Mathematica Joseph W. Goodman |
title_short | Simulating Fourier Optics Using Mathematica |
title_sort | simulating fourier optics using mathematica |
url | https://doi.org/10.1117/3.100316 |
work_keys_str_mv | AT goodmanjosephw simulatingfourieropticsusingmathematica |