Polypropylene Cable Insulation:
An introduction to a cutting-edge, environmentally friendly insulation material The installation and maintenance of high-voltage cables is an infrastructure problem with potentially major environmental impacts. In recent years, polypropylene has emerged as an environmentally friendly material for in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
WILEY-VCH
2024
|
Schlagworte: | |
Zusammenfassung: | An introduction to a cutting-edge, environmentally friendly insulation material The installation and maintenance of high-voltage cables is an infrastructure problem with potentially major environmental impacts. In recent years, polypropylene has emerged as an environmentally friendly material for insulating high-voltage cables, particularly HVDC power cables and HVAC power cables. Polypropylene Cable Insulation begins with an introduction to high-voltage cables and the development of polypropylene insulation before describing the dielectric properties and applications of this insulation in both HVDC and HVAC contexts. The result is a thorough, accessible guide to an essential part of any environmentally friendly power grid. Readers will also find: - Detailed explorations of the relationship between space charge behaviors and trap characteristics- Discussion of topics including polarization and dielectric relaxation, electrical treeing degradation, partial discharge, and more- Graphs and tables illustrating experimental resultsPolypropylene Cable Insulation is ideal for electrical power engineers, power transmission system operators, and any engineers or researchers working in power transmission and/or distribution cables |
Beschreibung: | About the Author xi; Preface xiii; Acknowledgements xv; 1 Introduction 1; 1.1 Background 1; 1.2 State of the Art of PP Modification Method 6; 1.2.1 Nanocomposites 6; 1.2.2 Polymer Blending 9; 1.2.3 Chemical Copolymerization and Grafting 10; 1.2.4 Crystallization Regulation 11; 1.3 Effect of Microstructures on Dielectric Properties 13; 1.3.1 Effect of Molecular Chain Structures 13; 1.3.2 Effect of Aggregate Structures 15; 1.4 Effect of Operating Conditions on Dielectric Properties 17; 1.4.1 Effect of Aging Treatment 17; 1.4.2 Effect of Thermal Stress 18; 1.4.3 Effect of Voltage Stress 18; 1.5 Content of This Book 19; References 21; Part I Polypropylene Insulation for HVDC Cables 29; 2 Space Charge and Dielectric Breakdown 31; 2.1 Introduction 31; 2.2 Effect of Elastomer on Space Charge and Breakdown Characteristics 32; 2.3 Effect of Inorganic Nanofiller on Space Charge and Dielectric Breakdown 45; 2.3.1 Metal Oxide Nanoparticles 45; 2.3.2 Nanoplatelets 52; 2.4 Effect of Organic - Compounds on Space Charge and Dielectric Breakdown 64; 2.4.1 Introduction 64; 2.4.2 Voltage Stabilizer 64; 2.4.3 Antioxidant Additives 80; 2.5 Conclusion and Outlook 92; References 92; 3 Electrical Treeing Phenomenon 103; 3.1 Introduction 103; 3.2 Electrical Treeing Under Impulse Superimposed on DC Voltage 105; 3.2.1 Effects of Impulse Amplitude 106; 3.2.2 Effects of Impulse Frequency 111; 3.2.3 Effects of DC Voltage Amplitude 112; 3.3 Effect of Ambient Temperature on Electrical Treeing 120; 3.3.1 Effect of Low Temperature 120; 3.3.2 Effect of Operating Temperature 129; 3.4 Effect of Bending Deformation on Electrical Treeing 141; 3.4.1 Effect of Bending Deformation 141; 3.4.2 Effect of Elastic Phase 148; 3.5 Methods for Suppressing Electrical Treeing 154; 3.5.1 Effect of the Type of Voltage Stabilizer 157; 3.5.2 Effect of the Content of Voltage Stabilizer 160; 3.6 Conclusion and Outlook 165; References 166; 4 Insulation Thickness Optimization for HVDC Cables 173; 4.1 Introduction 173; - 4.1.1 Development of Insulation Thickness of HVDC Cables 173; 4.1.2 Advantages of Insulation Thinning 174; 4.2 Electric Field Distribution Calculation Model for HVDC Cables 174; 4.2.1 Classical Electromagnetic Theoretical Model 174; 4.2.2 Bipolar Electronic–Ionic Charge Transport Model 178; 4.2.2.1 Charge Generation 179; 4.2.2.2 Charge Transport 179; 4.2.2.3 Charge Recombination 182; 4.2.2.4 Charge Extraction 182; 4.3 Space Charge and Electric Field Under DC Voltage 182; 4.4 Space Charge and Electric Field Under Polarity Reversal Voltage 187; 4.4.1 Effect of Temperature Gradients 188; 4.4.2 Effect of Polarity Reversal Periods 194; 4.5 Insulation Thickness Optimization for HVDC Cables 198; 4.5.1 Theoretical Design and Verification of Insulation Thickness of dc Cable 198; 4.5.1.1 Design Method of Insulation Thickness of HVDC Cables 199; 4.5.1.2 Analysis and Calculation of Insulation Thickness of HVDC Cables 200; 4.5.1.3 Verification of Insulation Thickness of DC Cable 203; 4.5.2 - Insulation Thickness Optimization Based on Modified BEICT Model 207; 4.6 Conclusions 214; References 214; Part II Polypropylene Insulation for HVAC Cables 219; 5 Polarization and Dielectric Relaxation 221; 5.1 Introduction 221; 5.2 Effect of Blending Modification 225; 5.2.1 FDS of PP Blend Insulation 225; 5.2.2 Effect on Dipole Orientational Polarization 228; 5.2.3 Effect on Carrier Hopping Polarization 230; 5.3 Effect of Monomer Grafting 233; 5.3.1 FDS of Grafting PP Insulation 238; 5.3.2 Effect on Dipole Orientational Polarization 240; 5.3.3 Effect on Carrier Hopping Polarization 242; 5.4 Effect of Thermal Ageing 245; 5.4.1 FDS of Thermal-Aged PP Insulation 245; 5.4.2 Effect on Dipole Orientational Polarization 247; 5.4.3 Effect on Carrier Hopping Polarization 249; 5.5 Conclusion and Outlook 252; References 252; 6 AC Electrical Treeing and Dielectric Breakdown 257; 6.1 Introduction 257; 6.2 Electrical Treeing Dependent on Crystalline Morphology 260; 6.2.1 Crystalline Morphology 260; - 6.2.2 Effect on Electrical Tree 263; 6.2.3 Effect on AC Breakdown 269; 6.3 An Insight into Electrical Tree Growth Within Heterogeneous Crystalline Structure 273; 6.3.1 Mechanism of Heterogeneous Crystalline Structure 273; 6.3.2 Heterogeneous Crystalline Structure Modulation Enhancing Dielectric Strength 281; 6.3.3 Electric Field Simulation of Heterogeneous Crystalline Structure 291; 6.3.3.1 Heterogeneous Mesoscopic Structure Simulation 291; 6.3.3.2 Electric Field Simulation in Mesoscopic Structure 294; 6.4 Methods for Suppressing Electrical Treeing 297; 6.4.1 Effect of Nucleating Agent and Cooling Rate on Dielectric Property of PP/POE 297; 6.4.2 Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation 310; 6.5 Conclusions 325; References 327; 7 Electrothermal Aging and Lifetime Modeling 333; 7.1 Introduction 333; 7.2 Aging Mechanism and Lifetime Models 334; 7.2.1 Physical Lifetime Models 334; 7.2.1.1 Thermodynamic - Models 335; 7.2.1.2 Space-Charge-Based Models 338; 7.2.1.3 PD-Induced Damage Model 341; 7.2.2 Phenomenological Lifetime Models 343; 7.2.2.1 Accelerated Life Tests Under Constant Stress 343; 7.2.2.2 Accelerated Life Tests Under Step Stress 344; 7.2.2.3 Single-Stress Electrical Lifetime Models 345; 7.2.2.4 Single-Stress Thermal Lifetime Models 347; 7.2.2.5 Combined Electrothermal Lifetime Models 349; 7.3 Thermal Aging 352; 7.3.1 Effect on Physical–Chemical Properties 352; 7.3.1.1 FT-IR Test 352; 7.3.1.2 XRD Test 353; 7.3.1.3 DSC Test 354; 7.3.1.4 SEM Test 355; 7.3.2 Effect on Mechanical and Electrical Properties 355; 7.3.2.1 Mechanical Test 355; 7.3.2.2 Conductivity Test 357; 7.3.2.3 FDS Test 358; 7.3.2.4 AC Breakdown Test 359; 7.3.3 Lifetime Prediction Under Thermal Stress 360; 7.3.3.1 Lifetime prediction model 360; 7.3.3.2 Validation of Prediction Model 362; 7.4 Electrical–Thermal Aging 363; 7.4.1 Breakdown Under Electrical–Thermal Stress 363; 7.4.2 Lifetime Models and - Prediction 367; 7.5 Conclusions 370; References 371; Index 375 |
Beschreibung: | 400 Seiten |
ISBN: | 9781394234431 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050148468 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 250131s2024 xx |||| 00||| und d | ||
020 | |a 9781394234431 |9 978-1-394-23443-1 | ||
024 | 3 | |a 9781394234431 | |
035 | |a (DE-599)BVBBV050148468 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | |a und | ||
049 | |a DE-29T | ||
100 | 1 | |a Du, Boxue |e Verfasser |4 aut | |
245 | 1 | 0 | |a Polypropylene Cable Insulation |
264 | 1 | |b WILEY-VCH |c 2024 | |
300 | |a 400 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a About the Author xi; Preface xiii; Acknowledgements xv; 1 Introduction 1; 1.1 Background 1; 1.2 State of the Art of PP Modification Method 6; 1.2.1 Nanocomposites 6; 1.2.2 Polymer Blending 9; 1.2.3 Chemical Copolymerization and Grafting 10; 1.2.4 Crystallization Regulation 11; 1.3 Effect of Microstructures on Dielectric Properties 13; 1.3.1 Effect of Molecular Chain Structures 13; 1.3.2 Effect of Aggregate Structures 15; 1.4 Effect of Operating Conditions on Dielectric Properties 17; 1.4.1 Effect of Aging Treatment 17; 1.4.2 Effect of Thermal Stress 18; 1.4.3 Effect of Voltage Stress 18; 1.5 Content of This Book 19; References 21; Part I Polypropylene Insulation for HVDC Cables 29; 2 Space Charge and Dielectric Breakdown 31; 2.1 Introduction 31; 2.2 Effect of Elastomer on Space Charge and Breakdown Characteristics 32; 2.3 Effect of Inorganic Nanofiller on Space Charge and Dielectric Breakdown 45; 2.3.1 Metal Oxide Nanoparticles 45; 2.3.2 Nanoplatelets 52; 2.4 Effect of Organic | ||
500 | |a - Compounds on Space Charge and Dielectric Breakdown 64; 2.4.1 Introduction 64; 2.4.2 Voltage Stabilizer 64; 2.4.3 Antioxidant Additives 80; 2.5 Conclusion and Outlook 92; References 92; 3 Electrical Treeing Phenomenon 103; 3.1 Introduction 103; 3.2 Electrical Treeing Under Impulse Superimposed on DC Voltage 105; 3.2.1 Effects of Impulse Amplitude 106; 3.2.2 Effects of Impulse Frequency 111; 3.2.3 Effects of DC Voltage Amplitude 112; 3.3 Effect of Ambient Temperature on Electrical Treeing 120; 3.3.1 Effect of Low Temperature 120; 3.3.2 Effect of Operating Temperature 129; 3.4 Effect of Bending Deformation on Electrical Treeing 141; 3.4.1 Effect of Bending Deformation 141; 3.4.2 Effect of Elastic Phase 148; 3.5 Methods for Suppressing Electrical Treeing 154; 3.5.1 Effect of the Type of Voltage Stabilizer 157; 3.5.2 Effect of the Content of Voltage Stabilizer 160; 3.6 Conclusion and Outlook 165; References 166; 4 Insulation Thickness Optimization for HVDC Cables 173; 4.1 Introduction 173; | ||
500 | |a - 4.1.1 Development of Insulation Thickness of HVDC Cables 173; 4.1.2 Advantages of Insulation Thinning 174; 4.2 Electric Field Distribution Calculation Model for HVDC Cables 174; 4.2.1 Classical Electromagnetic Theoretical Model 174; 4.2.2 Bipolar Electronic–Ionic Charge Transport Model 178; 4.2.2.1 Charge Generation 179; 4.2.2.2 Charge Transport 179; 4.2.2.3 Charge Recombination 182; 4.2.2.4 Charge Extraction 182; 4.3 Space Charge and Electric Field Under DC Voltage 182; 4.4 Space Charge and Electric Field Under Polarity Reversal Voltage 187; 4.4.1 Effect of Temperature Gradients 188; 4.4.2 Effect of Polarity Reversal Periods 194; 4.5 Insulation Thickness Optimization for HVDC Cables 198; 4.5.1 Theoretical Design and Verification of Insulation Thickness of dc Cable 198; 4.5.1.1 Design Method of Insulation Thickness of HVDC Cables 199; 4.5.1.2 Analysis and Calculation of Insulation Thickness of HVDC Cables 200; 4.5.1.3 Verification of Insulation Thickness of DC Cable 203; 4.5.2 | ||
500 | |a - Insulation Thickness Optimization Based on Modified BEICT Model 207; 4.6 Conclusions 214; References 214; Part II Polypropylene Insulation for HVAC Cables 219; 5 Polarization and Dielectric Relaxation 221; 5.1 Introduction 221; 5.2 Effect of Blending Modification 225; 5.2.1 FDS of PP Blend Insulation 225; 5.2.2 Effect on Dipole Orientational Polarization 228; 5.2.3 Effect on Carrier Hopping Polarization 230; 5.3 Effect of Monomer Grafting 233; 5.3.1 FDS of Grafting PP Insulation 238; 5.3.2 Effect on Dipole Orientational Polarization 240; 5.3.3 Effect on Carrier Hopping Polarization 242; 5.4 Effect of Thermal Ageing 245; 5.4.1 FDS of Thermal-Aged PP Insulation 245; 5.4.2 Effect on Dipole Orientational Polarization 247; 5.4.3 Effect on Carrier Hopping Polarization 249; 5.5 Conclusion and Outlook 252; References 252; 6 AC Electrical Treeing and Dielectric Breakdown 257; 6.1 Introduction 257; 6.2 Electrical Treeing Dependent on Crystalline Morphology 260; 6.2.1 Crystalline Morphology 260; | ||
500 | |a - 6.2.2 Effect on Electrical Tree 263; 6.2.3 Effect on AC Breakdown 269; 6.3 An Insight into Electrical Tree Growth Within Heterogeneous Crystalline Structure 273; 6.3.1 Mechanism of Heterogeneous Crystalline Structure 273; 6.3.2 Heterogeneous Crystalline Structure Modulation Enhancing Dielectric Strength 281; 6.3.3 Electric Field Simulation of Heterogeneous Crystalline Structure 291; 6.3.3.1 Heterogeneous Mesoscopic Structure Simulation 291; 6.3.3.2 Electric Field Simulation in Mesoscopic Structure 294; 6.4 Methods for Suppressing Electrical Treeing 297; 6.4.1 Effect of Nucleating Agent and Cooling Rate on Dielectric Property of PP/POE 297; 6.4.2 Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation 310; 6.5 Conclusions 325; References 327; 7 Electrothermal Aging and Lifetime Modeling 333; 7.1 Introduction 333; 7.2 Aging Mechanism and Lifetime Models 334; 7.2.1 Physical Lifetime Models 334; 7.2.1.1 Thermodynamic | ||
500 | |a - Models 335; 7.2.1.2 Space-Charge-Based Models 338; 7.2.1.3 PD-Induced Damage Model 341; 7.2.2 Phenomenological Lifetime Models 343; 7.2.2.1 Accelerated Life Tests Under Constant Stress 343; 7.2.2.2 Accelerated Life Tests Under Step Stress 344; 7.2.2.3 Single-Stress Electrical Lifetime Models 345; 7.2.2.4 Single-Stress Thermal Lifetime Models 347; 7.2.2.5 Combined Electrothermal Lifetime Models 349; 7.3 Thermal Aging 352; 7.3.1 Effect on Physical–Chemical Properties 352; 7.3.1.1 FT-IR Test 352; 7.3.1.2 XRD Test 353; 7.3.1.3 DSC Test 354; 7.3.1.4 SEM Test 355; 7.3.2 Effect on Mechanical and Electrical Properties 355; 7.3.2.1 Mechanical Test 355; 7.3.2.2 Conductivity Test 357; 7.3.2.3 FDS Test 358; 7.3.2.4 AC Breakdown Test 359; 7.3.3 Lifetime Prediction Under Thermal Stress 360; 7.3.3.1 Lifetime prediction model 360; 7.3.3.2 Validation of Prediction Model 362; 7.4 Electrical–Thermal Aging 363; 7.4.1 Breakdown Under Electrical–Thermal Stress 363; 7.4.2 Lifetime Models and | ||
500 | |a - Prediction 367; 7.5 Conclusions 370; References 371; Index 375 | ||
520 | |a An introduction to a cutting-edge, environmentally friendly insulation material The installation and maintenance of high-voltage cables is an infrastructure problem with potentially major environmental impacts. In recent years, polypropylene has emerged as an environmentally friendly material for insulating high-voltage cables, particularly HVDC power cables and HVAC power cables. Polypropylene Cable Insulation begins with an introduction to high-voltage cables and the development of polypropylene insulation before describing the dielectric properties and applications of this insulation in both HVDC and HVAC contexts. The result is a thorough, accessible guide to an essential part of any environmentally friendly power grid. Readers will also find: - Detailed explorations of the relationship between space charge behaviors and trap characteristics- Discussion of topics including polarization and dielectric relaxation, electrical treeing degradation, partial discharge, and more- Graphs and tables illustrating experimental resultsPolypropylene Cable Insulation is ideal for electrical power engineers, power transmission system operators, and any engineers or researchers working in power transmission and/or distribution cables | ||
650 | 4 | |a bisacsh | |
653 | |a Wärmetechnik, Energietechnik, Kraftwerktechnik | ||
700 | 1 | |a Li, Zhonglei |e Sonstige |4 oth | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035484830 |
Datensatz im Suchindex
_version_ | 1822807199438602240 |
---|---|
adam_text | |
any_adam_object | |
author | Du, Boxue |
author_facet | Du, Boxue |
author_role | aut |
author_sort | Du, Boxue |
author_variant | b d bd |
building | Verbundindex |
bvnumber | BV050148468 |
ctrlnum | (DE-599)BVBBV050148468 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050148468</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">250131s2024 xx |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394234431</subfield><subfield code="9">978-1-394-23443-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781394234431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050148468</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Boxue</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polypropylene Cable Insulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">WILEY-VCH</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">400 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">About the Author xi; Preface xiii; Acknowledgements xv; 1 Introduction 1; 1.1 Background 1; 1.2 State of the Art of PP Modification Method 6; 1.2.1 Nanocomposites 6; 1.2.2 Polymer Blending 9; 1.2.3 Chemical Copolymerization and Grafting 10; 1.2.4 Crystallization Regulation 11; 1.3 Effect of Microstructures on Dielectric Properties 13; 1.3.1 Effect of Molecular Chain Structures 13; 1.3.2 Effect of Aggregate Structures 15; 1.4 Effect of Operating Conditions on Dielectric Properties 17; 1.4.1 Effect of Aging Treatment 17; 1.4.2 Effect of Thermal Stress 18; 1.4.3 Effect of Voltage Stress 18; 1.5 Content of This Book 19; References 21; Part I Polypropylene Insulation for HVDC Cables 29; 2 Space Charge and Dielectric Breakdown 31; 2.1 Introduction 31; 2.2 Effect of Elastomer on Space Charge and Breakdown Characteristics 32; 2.3 Effect of Inorganic Nanofiller on Space Charge and Dielectric Breakdown 45; 2.3.1 Metal Oxide Nanoparticles 45; 2.3.2 Nanoplatelets 52; 2.4 Effect of Organic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Compounds on Space Charge and Dielectric Breakdown 64; 2.4.1 Introduction 64; 2.4.2 Voltage Stabilizer 64; 2.4.3 Antioxidant Additives 80; 2.5 Conclusion and Outlook 92; References 92; 3 Electrical Treeing Phenomenon 103; 3.1 Introduction 103; 3.2 Electrical Treeing Under Impulse Superimposed on DC Voltage 105; 3.2.1 Effects of Impulse Amplitude 106; 3.2.2 Effects of Impulse Frequency 111; 3.2.3 Effects of DC Voltage Amplitude 112; 3.3 Effect of Ambient Temperature on Electrical Treeing 120; 3.3.1 Effect of Low Temperature 120; 3.3.2 Effect of Operating Temperature 129; 3.4 Effect of Bending Deformation on Electrical Treeing 141; 3.4.1 Effect of Bending Deformation 141; 3.4.2 Effect of Elastic Phase 148; 3.5 Methods for Suppressing Electrical Treeing 154; 3.5.1 Effect of the Type of Voltage Stabilizer 157; 3.5.2 Effect of the Content of Voltage Stabilizer 160; 3.6 Conclusion and Outlook 165; References 166; 4 Insulation Thickness Optimization for HVDC Cables 173; 4.1 Introduction 173;</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4.1.1 Development of Insulation Thickness of HVDC Cables 173; 4.1.2 Advantages of Insulation Thinning 174; 4.2 Electric Field Distribution Calculation Model for HVDC Cables 174; 4.2.1 Classical Electromagnetic Theoretical Model 174; 4.2.2 Bipolar Electronic–Ionic Charge Transport Model 178; 4.2.2.1 Charge Generation 179; 4.2.2.2 Charge Transport 179; 4.2.2.3 Charge Recombination 182; 4.2.2.4 Charge Extraction 182; 4.3 Space Charge and Electric Field Under DC Voltage 182; 4.4 Space Charge and Electric Field Under Polarity Reversal Voltage 187; 4.4.1 Effect of Temperature Gradients 188; 4.4.2 Effect of Polarity Reversal Periods 194; 4.5 Insulation Thickness Optimization for HVDC Cables 198; 4.5.1 Theoretical Design and Verification of Insulation Thickness of dc Cable 198; 4.5.1.1 Design Method of Insulation Thickness of HVDC Cables 199; 4.5.1.2 Analysis and Calculation of Insulation Thickness of HVDC Cables 200; 4.5.1.3 Verification of Insulation Thickness of DC Cable 203; 4.5.2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Insulation Thickness Optimization Based on Modified BEICT Model 207; 4.6 Conclusions 214; References 214; Part II Polypropylene Insulation for HVAC Cables 219; 5 Polarization and Dielectric Relaxation 221; 5.1 Introduction 221; 5.2 Effect of Blending Modification 225; 5.2.1 FDS of PP Blend Insulation 225; 5.2.2 Effect on Dipole Orientational Polarization 228; 5.2.3 Effect on Carrier Hopping Polarization 230; 5.3 Effect of Monomer Grafting 233; 5.3.1 FDS of Grafting PP Insulation 238; 5.3.2 Effect on Dipole Orientational Polarization 240; 5.3.3 Effect on Carrier Hopping Polarization 242; 5.4 Effect of Thermal Ageing 245; 5.4.1 FDS of Thermal-Aged PP Insulation 245; 5.4.2 Effect on Dipole Orientational Polarization 247; 5.4.3 Effect on Carrier Hopping Polarization 249; 5.5 Conclusion and Outlook 252; References 252; 6 AC Electrical Treeing and Dielectric Breakdown 257; 6.1 Introduction 257; 6.2 Electrical Treeing Dependent on Crystalline Morphology 260; 6.2.1 Crystalline Morphology 260;</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6.2.2 Effect on Electrical Tree 263; 6.2.3 Effect on AC Breakdown 269; 6.3 An Insight into Electrical Tree Growth Within Heterogeneous Crystalline Structure 273; 6.3.1 Mechanism of Heterogeneous Crystalline Structure 273; 6.3.2 Heterogeneous Crystalline Structure Modulation Enhancing Dielectric Strength 281; 6.3.3 Electric Field Simulation of Heterogeneous Crystalline Structure 291; 6.3.3.1 Heterogeneous Mesoscopic Structure Simulation 291; 6.3.3.2 Electric Field Simulation in Mesoscopic Structure 294; 6.4 Methods for Suppressing Electrical Treeing 297; 6.4.1 Effect of Nucleating Agent and Cooling Rate on Dielectric Property of PP/POE 297; 6.4.2 Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation 310; 6.5 Conclusions 325; References 327; 7 Electrothermal Aging and Lifetime Modeling 333; 7.1 Introduction 333; 7.2 Aging Mechanism and Lifetime Models 334; 7.2.1 Physical Lifetime Models 334; 7.2.1.1 Thermodynamic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Models 335; 7.2.1.2 Space-Charge-Based Models 338; 7.2.1.3 PD-Induced Damage Model 341; 7.2.2 Phenomenological Lifetime Models 343; 7.2.2.1 Accelerated Life Tests Under Constant Stress 343; 7.2.2.2 Accelerated Life Tests Under Step Stress 344; 7.2.2.3 Single-Stress Electrical Lifetime Models 345; 7.2.2.4 Single-Stress Thermal Lifetime Models 347; 7.2.2.5 Combined Electrothermal Lifetime Models 349; 7.3 Thermal Aging 352; 7.3.1 Effect on Physical–Chemical Properties 352; 7.3.1.1 FT-IR Test 352; 7.3.1.2 XRD Test 353; 7.3.1.3 DSC Test 354; 7.3.1.4 SEM Test 355; 7.3.2 Effect on Mechanical and Electrical Properties 355; 7.3.2.1 Mechanical Test 355; 7.3.2.2 Conductivity Test 357; 7.3.2.3 FDS Test 358; 7.3.2.4 AC Breakdown Test 359; 7.3.3 Lifetime Prediction Under Thermal Stress 360; 7.3.3.1 Lifetime prediction model 360; 7.3.3.2 Validation of Prediction Model 362; 7.4 Electrical–Thermal Aging 363; 7.4.1 Breakdown Under Electrical–Thermal Stress 363; 7.4.2 Lifetime Models and</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Prediction 367; 7.5 Conclusions 370; References 371; Index 375</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An introduction to a cutting-edge, environmentally friendly insulation material The installation and maintenance of high-voltage cables is an infrastructure problem with potentially major environmental impacts. In recent years, polypropylene has emerged as an environmentally friendly material for insulating high-voltage cables, particularly HVDC power cables and HVAC power cables. Polypropylene Cable Insulation begins with an introduction to high-voltage cables and the development of polypropylene insulation before describing the dielectric properties and applications of this insulation in both HVDC and HVAC contexts. The result is a thorough, accessible guide to an essential part of any environmentally friendly power grid. Readers will also find: - Detailed explorations of the relationship between space charge behaviors and trap characteristics- Discussion of topics including polarization and dielectric relaxation, electrical treeing degradation, partial discharge, and more- Graphs and tables illustrating experimental resultsPolypropylene Cable Insulation is ideal for electrical power engineers, power transmission system operators, and any engineers or researchers working in power transmission and/or distribution cables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wärmetechnik, Energietechnik, Kraftwerktechnik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhonglei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035484830</subfield></datafield></record></collection> |
id | DE-604.BV050148468 |
illustrated | Not Illustrated |
indexdate | 2025-01-31T23:00:09Z |
institution | BVB |
isbn | 9781394234431 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035484830 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 400 Seiten |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Du, Boxue Verfasser aut Polypropylene Cable Insulation WILEY-VCH 2024 400 Seiten txt rdacontent n rdamedia nc rdacarrier About the Author xi; Preface xiii; Acknowledgements xv; 1 Introduction 1; 1.1 Background 1; 1.2 State of the Art of PP Modification Method 6; 1.2.1 Nanocomposites 6; 1.2.2 Polymer Blending 9; 1.2.3 Chemical Copolymerization and Grafting 10; 1.2.4 Crystallization Regulation 11; 1.3 Effect of Microstructures on Dielectric Properties 13; 1.3.1 Effect of Molecular Chain Structures 13; 1.3.2 Effect of Aggregate Structures 15; 1.4 Effect of Operating Conditions on Dielectric Properties 17; 1.4.1 Effect of Aging Treatment 17; 1.4.2 Effect of Thermal Stress 18; 1.4.3 Effect of Voltage Stress 18; 1.5 Content of This Book 19; References 21; Part I Polypropylene Insulation for HVDC Cables 29; 2 Space Charge and Dielectric Breakdown 31; 2.1 Introduction 31; 2.2 Effect of Elastomer on Space Charge and Breakdown Characteristics 32; 2.3 Effect of Inorganic Nanofiller on Space Charge and Dielectric Breakdown 45; 2.3.1 Metal Oxide Nanoparticles 45; 2.3.2 Nanoplatelets 52; 2.4 Effect of Organic - Compounds on Space Charge and Dielectric Breakdown 64; 2.4.1 Introduction 64; 2.4.2 Voltage Stabilizer 64; 2.4.3 Antioxidant Additives 80; 2.5 Conclusion and Outlook 92; References 92; 3 Electrical Treeing Phenomenon 103; 3.1 Introduction 103; 3.2 Electrical Treeing Under Impulse Superimposed on DC Voltage 105; 3.2.1 Effects of Impulse Amplitude 106; 3.2.2 Effects of Impulse Frequency 111; 3.2.3 Effects of DC Voltage Amplitude 112; 3.3 Effect of Ambient Temperature on Electrical Treeing 120; 3.3.1 Effect of Low Temperature 120; 3.3.2 Effect of Operating Temperature 129; 3.4 Effect of Bending Deformation on Electrical Treeing 141; 3.4.1 Effect of Bending Deformation 141; 3.4.2 Effect of Elastic Phase 148; 3.5 Methods for Suppressing Electrical Treeing 154; 3.5.1 Effect of the Type of Voltage Stabilizer 157; 3.5.2 Effect of the Content of Voltage Stabilizer 160; 3.6 Conclusion and Outlook 165; References 166; 4 Insulation Thickness Optimization for HVDC Cables 173; 4.1 Introduction 173; - 4.1.1 Development of Insulation Thickness of HVDC Cables 173; 4.1.2 Advantages of Insulation Thinning 174; 4.2 Electric Field Distribution Calculation Model for HVDC Cables 174; 4.2.1 Classical Electromagnetic Theoretical Model 174; 4.2.2 Bipolar Electronic–Ionic Charge Transport Model 178; 4.2.2.1 Charge Generation 179; 4.2.2.2 Charge Transport 179; 4.2.2.3 Charge Recombination 182; 4.2.2.4 Charge Extraction 182; 4.3 Space Charge and Electric Field Under DC Voltage 182; 4.4 Space Charge and Electric Field Under Polarity Reversal Voltage 187; 4.4.1 Effect of Temperature Gradients 188; 4.4.2 Effect of Polarity Reversal Periods 194; 4.5 Insulation Thickness Optimization for HVDC Cables 198; 4.5.1 Theoretical Design and Verification of Insulation Thickness of dc Cable 198; 4.5.1.1 Design Method of Insulation Thickness of HVDC Cables 199; 4.5.1.2 Analysis and Calculation of Insulation Thickness of HVDC Cables 200; 4.5.1.3 Verification of Insulation Thickness of DC Cable 203; 4.5.2 - Insulation Thickness Optimization Based on Modified BEICT Model 207; 4.6 Conclusions 214; References 214; Part II Polypropylene Insulation for HVAC Cables 219; 5 Polarization and Dielectric Relaxation 221; 5.1 Introduction 221; 5.2 Effect of Blending Modification 225; 5.2.1 FDS of PP Blend Insulation 225; 5.2.2 Effect on Dipole Orientational Polarization 228; 5.2.3 Effect on Carrier Hopping Polarization 230; 5.3 Effect of Monomer Grafting 233; 5.3.1 FDS of Grafting PP Insulation 238; 5.3.2 Effect on Dipole Orientational Polarization 240; 5.3.3 Effect on Carrier Hopping Polarization 242; 5.4 Effect of Thermal Ageing 245; 5.4.1 FDS of Thermal-Aged PP Insulation 245; 5.4.2 Effect on Dipole Orientational Polarization 247; 5.4.3 Effect on Carrier Hopping Polarization 249; 5.5 Conclusion and Outlook 252; References 252; 6 AC Electrical Treeing and Dielectric Breakdown 257; 6.1 Introduction 257; 6.2 Electrical Treeing Dependent on Crystalline Morphology 260; 6.2.1 Crystalline Morphology 260; - 6.2.2 Effect on Electrical Tree 263; 6.2.3 Effect on AC Breakdown 269; 6.3 An Insight into Electrical Tree Growth Within Heterogeneous Crystalline Structure 273; 6.3.1 Mechanism of Heterogeneous Crystalline Structure 273; 6.3.2 Heterogeneous Crystalline Structure Modulation Enhancing Dielectric Strength 281; 6.3.3 Electric Field Simulation of Heterogeneous Crystalline Structure 291; 6.3.3.1 Heterogeneous Mesoscopic Structure Simulation 291; 6.3.3.2 Electric Field Simulation in Mesoscopic Structure 294; 6.4 Methods for Suppressing Electrical Treeing 297; 6.4.1 Effect of Nucleating Agent and Cooling Rate on Dielectric Property of PP/POE 297; 6.4.2 Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation 310; 6.5 Conclusions 325; References 327; 7 Electrothermal Aging and Lifetime Modeling 333; 7.1 Introduction 333; 7.2 Aging Mechanism and Lifetime Models 334; 7.2.1 Physical Lifetime Models 334; 7.2.1.1 Thermodynamic - Models 335; 7.2.1.2 Space-Charge-Based Models 338; 7.2.1.3 PD-Induced Damage Model 341; 7.2.2 Phenomenological Lifetime Models 343; 7.2.2.1 Accelerated Life Tests Under Constant Stress 343; 7.2.2.2 Accelerated Life Tests Under Step Stress 344; 7.2.2.3 Single-Stress Electrical Lifetime Models 345; 7.2.2.4 Single-Stress Thermal Lifetime Models 347; 7.2.2.5 Combined Electrothermal Lifetime Models 349; 7.3 Thermal Aging 352; 7.3.1 Effect on Physical–Chemical Properties 352; 7.3.1.1 FT-IR Test 352; 7.3.1.2 XRD Test 353; 7.3.1.3 DSC Test 354; 7.3.1.4 SEM Test 355; 7.3.2 Effect on Mechanical and Electrical Properties 355; 7.3.2.1 Mechanical Test 355; 7.3.2.2 Conductivity Test 357; 7.3.2.3 FDS Test 358; 7.3.2.4 AC Breakdown Test 359; 7.3.3 Lifetime Prediction Under Thermal Stress 360; 7.3.3.1 Lifetime prediction model 360; 7.3.3.2 Validation of Prediction Model 362; 7.4 Electrical–Thermal Aging 363; 7.4.1 Breakdown Under Electrical–Thermal Stress 363; 7.4.2 Lifetime Models and - Prediction 367; 7.5 Conclusions 370; References 371; Index 375 An introduction to a cutting-edge, environmentally friendly insulation material The installation and maintenance of high-voltage cables is an infrastructure problem with potentially major environmental impacts. In recent years, polypropylene has emerged as an environmentally friendly material for insulating high-voltage cables, particularly HVDC power cables and HVAC power cables. Polypropylene Cable Insulation begins with an introduction to high-voltage cables and the development of polypropylene insulation before describing the dielectric properties and applications of this insulation in both HVDC and HVAC contexts. The result is a thorough, accessible guide to an essential part of any environmentally friendly power grid. Readers will also find: - Detailed explorations of the relationship between space charge behaviors and trap characteristics- Discussion of topics including polarization and dielectric relaxation, electrical treeing degradation, partial discharge, and more- Graphs and tables illustrating experimental resultsPolypropylene Cable Insulation is ideal for electrical power engineers, power transmission system operators, and any engineers or researchers working in power transmission and/or distribution cables bisacsh Wärmetechnik, Energietechnik, Kraftwerktechnik Li, Zhonglei Sonstige oth |
spellingShingle | Du, Boxue Polypropylene Cable Insulation bisacsh |
title | Polypropylene Cable Insulation |
title_auth | Polypropylene Cable Insulation |
title_exact_search | Polypropylene Cable Insulation |
title_full | Polypropylene Cable Insulation |
title_fullStr | Polypropylene Cable Insulation |
title_full_unstemmed | Polypropylene Cable Insulation |
title_short | Polypropylene Cable Insulation |
title_sort | polypropylene cable insulation |
topic | bisacsh |
topic_facet | bisacsh |
work_keys_str_mv | AT duboxue polypropylenecableinsulation AT lizhonglei polypropylenecableinsulation |