Machine learning: theory and practice
"Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2023
|
Ausgabe: | First edition |
Schriftenreihe: | A Chapman & Hall Book
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks (CNNs), reinforcement learning, and unsupervised learning focused on clustering. Topics are introduced in a conceptual manner along with necessary mathematical details. The explanations are lucid, illustrated with figures and examples. For each machine learning method discussed, the book presents appropriate libraries in the R programming language along with programming examples"-- |
Beschreibung: | Literaturverzeichnis: Seite 275-277 |
Beschreibung: | xv, 282 Seiten Diagramme |
ISBN: | 9780367433529 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050129979 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 250121s2023 xxu|||| |||| 00||| eng d | ||
020 | |a 9780367433529 |c (pbk) |9 978-0-367-43352-9 | ||
024 | 3 | |a 9780367433543 | |
035 | |a (DE-599)BVBBV050129979 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US |a xxk |c XA-GB | ||
049 | |a DE-706 | ||
082 | 0 | |a 006.3/1 |2 23 | |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Kalita, Jugal Kumar |e Verfasser |0 (DE-588)1038035732 |4 aut | |
245 | 1 | 0 | |a Machine learning |b theory and practice |c Jugal Kalita |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2023 | |
300 | |a xv, 282 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Chapman & Hall Book | |
500 | |a Literaturverzeichnis: Seite 275-277 | ||
520 | 3 | |a "Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks (CNNs), reinforcement learning, and unsupervised learning focused on clustering. Topics are introduced in a conceptual manner along with necessary mathematical details. The explanations are lucid, illustrated with figures and examples. For each machine learning method discussed, the book presents appropriate libraries in the R programming language along with programming examples"-- | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Machine learning | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1821223152.pdf |v 2023-10-25 |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035466674 |
Datensatz im Suchindex
_version_ | 1821840841598042113 |
---|---|
adam_text | |
any_adam_object | |
author | Kalita, Jugal Kumar |
author_GND | (DE-588)1038035732 |
author_facet | Kalita, Jugal Kumar |
author_role | aut |
author_sort | Kalita, Jugal Kumar |
author_variant | j k k jk jkk |
building | Verbundindex |
bvnumber | BV050129979 |
ctrlnum | (DE-599)BVBBV050129979 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050129979</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">250121s2023 xxu|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367433529</subfield><subfield code="c">(pbk)</subfield><subfield code="9">978-0-367-43352-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780367433543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050129979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kalita, Jugal Kumar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1038035732</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning</subfield><subfield code="b">theory and practice</subfield><subfield code="c">Jugal Kalita</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 282 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman & Hall Book</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 275-277</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks (CNNs), reinforcement learning, and unsupervised learning focused on clustering. Topics are introduced in a conceptual manner along with necessary mathematical details. The explanations are lucid, illustrated with figures and examples. For each machine learning method discussed, the book presents appropriate libraries in the R programming language along with programming examples"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1821223152.pdf</subfield><subfield code="v">2023-10-25</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035466674</subfield></datafield></record></collection> |
id | DE-604.BV050129979 |
illustrated | Not Illustrated |
indexdate | 2025-01-21T07:00:19Z |
institution | BVB |
isbn | 9780367433529 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035466674 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | xv, 282 Seiten Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press |
record_format | marc |
series2 | A Chapman & Hall Book |
spelling | Kalita, Jugal Kumar Verfasser (DE-588)1038035732 aut Machine learning theory and practice Jugal Kalita First edition Boca Raton ; London ; New York CRC Press 2023 xv, 282 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier A Chapman & Hall Book Literaturverzeichnis: Seite 275-277 "Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks (CNNs), reinforcement learning, and unsupervised learning focused on clustering. Topics are introduced in a conceptual manner along with necessary mathematical details. The explanations are lucid, illustrated with figures and examples. For each machine learning method discussed, the book presents appropriate libraries in the R programming language along with programming examples"-- Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Machine learning Maschinelles Lernen (DE-588)4193754-5 s DE-604 B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1821223152.pdf 2023-10-25 Inhaltsverzeichnis |
spellingShingle | Kalita, Jugal Kumar Machine learning theory and practice Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine learning theory and practice |
title_auth | Machine learning theory and practice |
title_exact_search | Machine learning theory and practice |
title_full | Machine learning theory and practice Jugal Kalita |
title_fullStr | Machine learning theory and practice Jugal Kalita |
title_full_unstemmed | Machine learning theory and practice Jugal Kalita |
title_short | Machine learning |
title_sort | machine learning theory and practice |
title_sub | theory and practice |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen |
url | https://www.gbv.de/dms/tib-ub-hannover/1821223152.pdf |
work_keys_str_mv | AT kalitajugalkumar machinelearningtheoryandpractice |