Machine learning: theory and practice

"Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kalita, Jugal Kumar (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press 2023
Ausgabe:First edition
Schriftenreihe:A Chapman & Hall Book
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Zusammenfassung:"Machine Learning: Theory and Practice provides an introduction to the most popular methods in machine learning. The book covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including Convolutional Neural Networks (CNNs), reinforcement learning, and unsupervised learning focused on clustering. Topics are introduced in a conceptual manner along with necessary mathematical details. The explanations are lucid, illustrated with figures and examples. For each machine learning method discussed, the book presents appropriate libraries in the R programming language along with programming examples"--
Beschreibung:Literaturverzeichnis: Seite 275-277
Beschreibung:xv, 282 Seiten Diagramme
ISBN:9780367433529

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Inhaltsverzeichnis