Natural Image Statistics: A Probabilistic Approach to Early Computational Vision.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2009
|
Ausgabe: | 1st ed. 2009 |
Schriftenreihe: | Computational Imaging and Vision
39 |
Schlagworte: | |
Online-Zugang: | DE-355 Volltext |
Beschreibung: | 1 Online-Ressource (XIX, 448 Seiten) |
ISBN: | 9781848824911 |
DOI: | 10.1007/978-1-84882-491-1 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV050122705 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250115s2009 xx o|||| 00||| eng d | ||
020 | |a 9781848824911 |9 978-1-84882-491-1 | ||
024 | 7 | |a 10.1007/978-1-84882-491-1 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-84882-491-1 | ||
035 | |a (DE-599)BVBBV050122705 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
082 | 0 | |a 612.8 |2 23 | |
100 | 1 | |a Hyvärinen, Aapo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Natural Image Statistics |b A Probabilistic Approach to Early Computational Vision. |c by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer |
250 | |a 1st ed. 2009 | ||
264 | 1 | |a London |b Springer London |c 2009 | |
300 | |a 1 Online-Ressource (XIX, 448 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computational Imaging and Vision |v 39 | |
505 | 8 | |a One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics | |
650 | 4 | |a Neuroscience | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Signal, Speech and Image Processing | |
650 | 4 | |a Neurosciences | |
650 | 4 | |a Image processing / Digital techniques | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Signal processing | |
700 | 1 | |a Hurri, Jarmo |4 aut | |
700 | 1 | |a Hoyer, Patrick O. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781848824904 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781848825031 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781849968447 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-84882-491-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-1-SCS | ||
940 | 1 | |q ZDB-2-SCS_2009 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035459575 | |
966 | e | |u https://doi.org/10.1007/978-1-84882-491-1 |l DE-355 |p ZDB-2-SCS |q UBR Paketkauf 2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1821312683228528640 |
---|---|
adam_text | |
any_adam_object | |
author | Hyvärinen, Aapo Hurri, Jarmo Hoyer, Patrick O. |
author_facet | Hyvärinen, Aapo Hurri, Jarmo Hoyer, Patrick O. |
author_role | aut aut aut |
author_sort | Hyvärinen, Aapo |
author_variant | a h ah j h jh p o h po poh |
building | Verbundindex |
bvnumber | BV050122705 |
collection | ZDB-1-SCS |
contents | One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics |
ctrlnum | (ZDB-2-SCS)978-1-84882-491-1 (DE-599)BVBBV050122705 |
dewey-full | 612.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8 |
dewey-search | 612.8 |
dewey-sort | 3612.8 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
doi_str_mv | 10.1007/978-1-84882-491-1 |
edition | 1st ed. 2009 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV050122705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250115s2009 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848824911</subfield><subfield code="9">978-1-84882-491-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-84882-491-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-84882-491-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050122705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hyvärinen, Aapo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural Image Statistics</subfield><subfield code="b">A Probabilistic Approach to Early Computational Vision.</subfield><subfield code="c">by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2009</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 448 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational Imaging and Vision</subfield><subfield code="v">39</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Speech and Image Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurosciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing / Digital techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurri, Jarmo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoyer, Patrick O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781848824904</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781848825031</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781849968447</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-84882-491-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2009</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035459575</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-84882-491-1</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">UBR Paketkauf 2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050122705 |
illustrated | Not Illustrated |
indexdate | 2025-01-15T11:05:28Z |
institution | BVB |
isbn | 9781848824911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035459575 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (XIX, 448 Seiten) |
psigel | ZDB-1-SCS ZDB-2-SCS_2009 ZDB-2-SCS UBR Paketkauf 2024 |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer London |
record_format | marc |
series2 | Computational Imaging and Vision |
spelling | Hyvärinen, Aapo Verfasser aut Natural Image Statistics A Probabilistic Approach to Early Computational Vision. by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer 1st ed. 2009 London Springer London 2009 1 Online-Ressource (XIX, 448 Seiten) txt rdacontent c rdamedia cr rdacarrier Computational Imaging and Vision 39 One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics Neuroscience Computer Imaging, Vision, Pattern Recognition and Graphics Signal, Speech and Image Processing Neurosciences Image processing / Digital techniques Computer vision Signal processing Hurri, Jarmo aut Hoyer, Patrick O. aut Erscheint auch als Druck-Ausgabe 9781848824904 Erscheint auch als Druck-Ausgabe 9781848825031 Erscheint auch als Druck-Ausgabe 9781849968447 https://doi.org/10.1007/978-1-84882-491-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hyvärinen, Aapo Hurri, Jarmo Hoyer, Patrick O. Natural Image Statistics A Probabilistic Approach to Early Computational Vision. One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics Neuroscience Computer Imaging, Vision, Pattern Recognition and Graphics Signal, Speech and Image Processing Neurosciences Image processing / Digital techniques Computer vision Signal processing |
title | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. |
title_auth | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. |
title_exact_search | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. |
title_full | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer |
title_fullStr | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer |
title_full_unstemmed | Natural Image Statistics A Probabilistic Approach to Early Computational Vision. by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer |
title_short | Natural Image Statistics |
title_sort | natural image statistics a probabilistic approach to early computational vision |
title_sub | A Probabilistic Approach to Early Computational Vision. |
topic | Neuroscience Computer Imaging, Vision, Pattern Recognition and Graphics Signal, Speech and Image Processing Neurosciences Image processing / Digital techniques Computer vision Signal processing |
topic_facet | Neuroscience Computer Imaging, Vision, Pattern Recognition and Graphics Signal, Speech and Image Processing Neurosciences Image processing / Digital techniques Computer vision Signal processing |
url | https://doi.org/10.1007/978-1-84882-491-1 |
work_keys_str_mv | AT hyvarinenaapo naturalimagestatisticsaprobabilisticapproachtoearlycomputationalvision AT hurrijarmo naturalimagestatisticsaprobabilisticapproachtoearlycomputationalvision AT hoyerpatricko naturalimagestatisticsaprobabilisticapproachtoearlycomputationalvision |