Spline functions: more computational methods
This book is a continuation of the author's earlier book Spline Functions: Computational Methods, published in 2015 by SIAM. This new book focuses on computational methods developed in the last ten years that make use of splines to approximate functions and data and to solve boundary-value prob...
Gespeichert in:
Vorheriger Titel: | Spline functions : computational methods |
---|---|
1. Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia
SIAM, Society for Industrial and Applied Mathematics
[2025]
|
Schriftenreihe: | Other titles in applied mathematics
200 |
Schlagworte: | |
Online-Zugang: | DE-91 DE-29 URL des Erstveröffentlichers |
Zusammenfassung: | This book is a continuation of the author's earlier book Spline Functions: Computational Methods, published in 2015 by SIAM. This new book focuses on computational methods developed in the last ten years that make use of splines to approximate functions and data and to solve boundary-value problems. The first half of the book works with bivariate spaces of splines defined on H-triangulations, T-meshes, and curved triangulations. Trivariate tensor-product splines and splines on tetrahedral partitions are also discussed. The second half of the book makes use of these spaces to solve boundary-value problems, with a special emphasis on elliptic PDEs defined on curved domains. The book contains numerous examples and figures to illustrate the methods and their performance. |
Beschreibung: | 1 Online-Ressource (xii, 337 Seiten) Illustrationen |
ISBN: | 9781611978186 9781611978179 |
DOI: | 10.1137/1.9781611978186 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV050120539 | ||
003 | DE-604 | ||
005 | 20250212 | ||
007 | cr|uuu---uuuuu | ||
008 | 250114s2025 xx a||| o|||| 00||| eng d | ||
020 | |a 9781611978186 |c Online |9 978-1-61197-818-6 | ||
020 | |a 9781611978179 |c Print |9 978-1-61197-817-9 | ||
024 | 7 | |a 10.1137/1.9781611978186 |2 doi | |
035 | |a (OCoLC)1492137066 | ||
035 | |a (DE-599)BVBBV050120539 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-91 |a DE-83 | ||
084 | |a MAT 654 |2 stub | ||
100 | 1 | |a Schumaker, Larry L. |d 1939- |0 (DE-588)109142918 |4 aut | |
245 | 1 | 0 | |a Spline functions |b more computational methods |c Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee |
264 | 1 | |a Philadelphia |b SIAM, Society for Industrial and Applied Mathematics |c [2025] | |
264 | 4 | |c © 2025 | |
300 | |a 1 Online-Ressource (xii, 337 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Other titles in applied mathematics |v 200 | |
520 | |a This book is a continuation of the author's earlier book Spline Functions: Computational Methods, published in 2015 by SIAM. This new book focuses on computational methods developed in the last ten years that make use of splines to approximate functions and data and to solve boundary-value problems. The first half of the book works with bivariate spaces of splines defined on H-triangulations, T-meshes, and curved triangulations. Trivariate tensor-product splines and splines on tetrahedral partitions are also discussed. The second half of the book makes use of these spaces to solve boundary-value problems, with a special emphasis on elliptic PDEs defined on curved domains. The book contains numerous examples and figures to illustrate the methods and their performance. | ||
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Funktion |0 (DE-588)4056332-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline-Funktion |0 (DE-588)4056332-7 |D s |
689 | 0 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-61197-817-9 |
780 | 0 | 0 | |i Vorangegangen ist |t Spline functions : computational methods |z 978-1-61197-390-7 |w (DE-604)BV042708486 |
830 | 0 | |a Other titles in applied mathematics |v 200 |w (DE-604)BV040633124 |9 200 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611978186 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-72-SIA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035457388 | |
966 | e | |u https://doi.org/10.1137/1.9781611978186 |l DE-91 |p ZDB-72-SIA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611978186 |l DE-29 |p ZDB-72-SIA |q UER_Paketkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1823849106638897152 |
---|---|
adam_text | |
any_adam_object | |
author | Schumaker, Larry L. 1939- |
author_GND | (DE-588)109142918 |
author_facet | Schumaker, Larry L. 1939- |
author_role | aut |
author_sort | Schumaker, Larry L. 1939- |
author_variant | l l s ll lls |
building | Verbundindex |
bvnumber | BV050120539 |
classification_tum | MAT 654 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)1492137066 (DE-599)BVBBV050120539 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611978186 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV050120539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250212</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250114s2025 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611978186</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-61197-818-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611978179</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-61197-817-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611978186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1492137066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050120539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 654</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schumaker, Larry L.</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)109142918</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spline functions</subfield><subfield code="b">more computational methods</subfield><subfield code="c">Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia</subfield><subfield code="b">SIAM, Society for Industrial and Applied Mathematics</subfield><subfield code="c">[2025]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 337 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Other titles in applied mathematics</subfield><subfield code="v">200</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a continuation of the author's earlier book Spline Functions: Computational Methods, published in 2015 by SIAM. This new book focuses on computational methods developed in the last ten years that make use of splines to approximate functions and data and to solve boundary-value problems. The first half of the book works with bivariate spaces of splines defined on H-triangulations, T-meshes, and curved triangulations. Trivariate tensor-product splines and splines on tetrahedral partitions are also discussed. The second half of the book makes use of these spaces to solve boundary-value problems, with a special emphasis on elliptic PDEs defined on curved domains. The book contains numerous examples and figures to illustrate the methods and their performance.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-61197-817-9</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="t">Spline functions : computational methods</subfield><subfield code="z">978-1-61197-390-7</subfield><subfield code="w">(DE-604)BV042708486</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Other titles in applied mathematics</subfield><subfield code="v">200</subfield><subfield code="w">(DE-604)BV040633124</subfield><subfield code="9">200</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611978186</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035457388</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611978186</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611978186</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">UER_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050120539 |
illustrated | Illustrated |
indexdate | 2025-02-12T11:00:49Z |
institution | BVB |
isbn | 9781611978186 9781611978179 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035457388 |
oclc_num | 1492137066 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (xii, 337 Seiten) Illustrationen |
psigel | ZDB-72-SIA ZDB-72-SIA TUM_Paketkauf_2024 ZDB-72-SIA UER_Paketkauf |
publishDate | 2025 |
publishDateSearch | 2025 |
publishDateSort | 2025 |
publisher | SIAM, Society for Industrial and Applied Mathematics |
record_format | marc |
series | Other titles in applied mathematics |
series2 | Other titles in applied mathematics |
spelling | Schumaker, Larry L. 1939- (DE-588)109142918 aut Spline functions more computational methods Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee Philadelphia SIAM, Society for Industrial and Applied Mathematics [2025] © 2025 1 Online-Ressource (xii, 337 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Other titles in applied mathematics 200 This book is a continuation of the author's earlier book Spline Functions: Computational Methods, published in 2015 by SIAM. This new book focuses on computational methods developed in the last ten years that make use of splines to approximate functions and data and to solve boundary-value problems. The first half of the book works with bivariate spaces of splines defined on H-triangulations, T-meshes, and curved triangulations. Trivariate tensor-product splines and splines on tetrahedral partitions are also discussed. The second half of the book makes use of these spaces to solve boundary-value problems, with a special emphasis on elliptic PDEs defined on curved domains. The book contains numerous examples and figures to illustrate the methods and their performance. Theorie (DE-588)4059787-8 gnd rswk-swf Spline-Funktion (DE-588)4056332-7 gnd rswk-swf Spline-Funktion (DE-588)4056332-7 s Theorie (DE-588)4059787-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-1-61197-817-9 Vorangegangen ist Spline functions : computational methods 978-1-61197-390-7 (DE-604)BV042708486 Other titles in applied mathematics 200 (DE-604)BV040633124 200 https://doi.org/10.1137/1.9781611978186 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schumaker, Larry L. 1939- Spline functions more computational methods Other titles in applied mathematics Theorie (DE-588)4059787-8 gnd Spline-Funktion (DE-588)4056332-7 gnd |
subject_GND | (DE-588)4059787-8 (DE-588)4056332-7 |
title | Spline functions more computational methods |
title_auth | Spline functions more computational methods |
title_exact_search | Spline functions more computational methods |
title_full | Spline functions more computational methods Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee |
title_fullStr | Spline functions more computational methods Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee |
title_full_unstemmed | Spline functions more computational methods Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee |
title_old | Spline functions : computational methods |
title_short | Spline functions |
title_sort | spline functions more computational methods |
title_sub | more computational methods |
topic | Theorie (DE-588)4059787-8 gnd Spline-Funktion (DE-588)4056332-7 gnd |
topic_facet | Theorie Spline-Funktion |
url | https://doi.org/10.1137/1.9781611978186 |
volume_link | (DE-604)BV040633124 |
work_keys_str_mv | AT schumakerlarryl splinefunctionsmorecomputationalmethods |