Building Scalable Deep Learning Pipelines on AWS: Develop, Train, and Deploy Deep Learning Models
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
2024
Berkeley, CA |
Ausgabe: | 1st ed. 2024 |
Schlagworte: | |
Online-Zugang: | DE-522 DE-1043 DE-1046 DE-Aug4 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-860 DE-1049 DE-863 DE-862 DE-523 DE-20 DE-706 Volltext |
Beschreibung: | 1 Online-Ressource (XX, 760 p. 24 illus., 23 illus. in color) |
DOI: | 10.1007/979-8-8688-1017-6 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050117928 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250113s2024 xx o|||| 00||| eng d | ||
020 | |z 9798868810176 |c Online |9 9798868810176 | ||
024 | 7 | |a 10.1007/979-8-8688-1017-6 |2 doi | |
035 | |a (ZDB-2-CWD)9798868810176 | ||
035 | |a (DE-599)BVBBV050117928 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-1051 |a DE-1049 |a DE-1046 |a DE-Aug4 |a DE-1050 |a DE-92 |a DE-M347 |a DE-20 |a DE-860 |a DE-573 |a DE-898 |a DE-862 |a DE-1043 |a DE-523 |a DE-706 |a DE-522 | ||
082 | 0 | |a 006.31 |2 23 | |
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Testas, Abdelaziz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Building Scalable Deep Learning Pipelines on AWS |b Develop, Train, and Deploy Deep Learning Models |c by Abdelaziz Testas |
250 | |a 1st ed. 2024 | ||
264 | 1 | |a Berkeley, CA |b Apress |c 2024 | |
264 | 1 | |a Berkeley, CA |b Apress | |
300 | |a 1 Online-Ressource (XX, 760 p. 24 illus., 23 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Machine Learning | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Python | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Python (Computer program language) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9798868810169 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9798868810183 |
856 | 4 | 0 | |u https://doi.org/10.1007/979-8-8688-1017-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
940 | 1 | |q ZDB-2-CWD_2024 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035454835 | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-522 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-1043 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-1046 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-Aug4 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-1050 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-573 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-M347 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-92 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-1051 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-898 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-860 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-1049 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-863 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-862 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-523 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-20 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/979-8-8688-1017-6 |l DE-706 |p ZDB-2-CWD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1821191594502520832 |
---|---|
adam_text | |
any_adam_object | |
author | Testas, Abdelaziz |
author_facet | Testas, Abdelaziz |
author_role | aut |
author_sort | Testas, Abdelaziz |
author_variant | a t at |
building | Verbundindex |
bvnumber | BV050117928 |
classification_tum | DAT 000 |
collection | ZDB-2-CWD |
ctrlnum | (ZDB-2-CWD)9798868810176 (DE-599)BVBBV050117928 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/979-8-8688-1017-6 |
edition | 1st ed. 2024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050117928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250113s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9798868810176</subfield><subfield code="c">Online</subfield><subfield code="9">9798868810176</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/979-8-8688-1017-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9798868810176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050117928</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-522</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Testas, Abdelaziz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Scalable Deep Learning Pipelines on AWS</subfield><subfield code="b">Develop, Train, and Deploy Deep Learning Models</subfield><subfield code="c">by Abdelaziz Testas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 760 p. 24 illus., 23 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798868810169</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798868810183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2024</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035454835</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-522</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-1051</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-1049</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/979-8-8688-1017-6</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050117928 |
illustrated | Not Illustrated |
indexdate | 2025-01-14T04:00:48Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035454835 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-1051 DE-1049 DE-1046 DE-Aug4 DE-1050 DE-92 DE-M347 DE-20 DE-860 DE-573 DE-898 DE-BY-UBR DE-862 DE-BY-FWS DE-1043 DE-523 DE-706 DE-522 |
owner_facet | DE-863 DE-BY-FWS DE-1051 DE-1049 DE-1046 DE-Aug4 DE-1050 DE-92 DE-M347 DE-20 DE-860 DE-573 DE-898 DE-BY-UBR DE-862 DE-BY-FWS DE-1043 DE-523 DE-706 DE-522 |
physical | 1 Online-Ressource (XX, 760 p. 24 illus., 23 illus. in color) |
psigel | ZDB-2-CWD ZDB-2-CWD_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Apress |
record_format | marc |
spellingShingle | Testas, Abdelaziz Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models Machine Learning Artificial Intelligence Python Machine learning Artificial intelligence Python (Computer program language) |
title | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models |
title_auth | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models |
title_exact_search | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models |
title_full | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models by Abdelaziz Testas |
title_fullStr | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models by Abdelaziz Testas |
title_full_unstemmed | Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models by Abdelaziz Testas |
title_short | Building Scalable Deep Learning Pipelines on AWS |
title_sort | building scalable deep learning pipelines on aws develop train and deploy deep learning models |
title_sub | Develop, Train, and Deploy Deep Learning Models |
topic | Machine Learning Artificial Intelligence Python Machine learning Artificial intelligence Python (Computer program language) |
topic_facet | Machine Learning Artificial Intelligence Python Machine learning Artificial intelligence Python (Computer program language) |
url | https://doi.org/10.1007/979-8-8688-1017-6 |
work_keys_str_mv | AT testasabdelaziz buildingscalabledeeplearningpipelinesonawsdeveloptrainanddeploydeeplearningmodels |