Gauss Hypergeometric Function: Special Matrix Functions, q-Special Functions
This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix argumen...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2024]
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 DE-Aug4 Volltext |
Zusammenfassung: | This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix arguments, Gauss hypergeometric function with matrix parameters, the matrix-valued Gauss hypergeometric function, the finite field version, the extended Gauss hypergeometric function, the $(p, q)$- Gauss hypergeometric function, the incomplete Gauss hypergeometric function and the discrete analogue of Gauss hypergeometric function.All these forms of the Gauss hypergeometric function and their properties are presented in such a way that the reader can understand the working algorithm and apply the same for other special functions. This book is useful for UG and PG students, researchers and faculty members working in the field of special functions and related areas |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 16. Dec 2024) |
Beschreibung: | 1 Online-Ressource (XVI, 362 Seiten) |
ISBN: | 9783111324586 |
DOI: | 10.1515/9783111324586 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050115352 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250110s2024 xx o|||| 00||| eng d | ||
020 | |a 9783111324586 |9 978-3-11-132458-6 | ||
024 | 7 | |a 10.1515/9783111324586 |2 doi | |
035 | |a (ZDB-23-DGG)9783111324586 | ||
035 | |a (DE-599)BVBBV050115352 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 | ||
100 | 1 | |a Dwivedi, Ravi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gauss Hypergeometric Function |b Special Matrix Functions, q-Special Functions |c Ravi Dwivedi |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2024] | |
264 | 4 | |c 2025 | |
300 | |a 1 Online-Ressource (XVI, 362 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 16. Dec 2024) | ||
520 | |a This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix arguments, Gauss hypergeometric function with matrix parameters, the matrix-valued Gauss hypergeometric function, the finite field version, the extended Gauss hypergeometric function, the $(p, q)$- Gauss hypergeometric function, the incomplete Gauss hypergeometric function and the discrete analogue of Gauss hypergeometric function.All these forms of the Gauss hypergeometric function and their properties are presented in such a way that the reader can understand the working algorithm and apply the same for other special functions. This book is useful for UG and PG students, researchers and faculty members working in the field of special functions and related areas | ||
546 | |a In English | ||
650 | 4 | |a Endliches Feld | |
650 | 4 | |a Hypergeometrische Funktionen | |
650 | 4 | |a Lineare und multilineare Algebra | |
650 | 4 | |a Matrix-Argumente | |
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783111321455 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783111324586 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035452289 | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111324586 |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820859825687363584 |
---|---|
adam_text | |
any_adam_object | |
author | Dwivedi, Ravi |
author_facet | Dwivedi, Ravi |
author_role | aut |
author_sort | Dwivedi, Ravi |
author_variant | r d rd |
building | Verbundindex |
bvnumber | BV050115352 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783111324586 (DE-599)BVBBV050115352 |
doi_str_mv | 10.1515/9783111324586 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050115352</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250110s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111324586</subfield><subfield code="9">978-3-11-132458-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783111324586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783111324586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050115352</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dwivedi, Ravi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gauss Hypergeometric Function</subfield><subfield code="b">Special Matrix Functions, q-Special Functions</subfield><subfield code="c">Ravi Dwivedi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 362 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 16. Dec 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix arguments, Gauss hypergeometric function with matrix parameters, the matrix-valued Gauss hypergeometric function, the finite field version, the extended Gauss hypergeometric function, the $(p, q)$- Gauss hypergeometric function, the incomplete Gauss hypergeometric function and the discrete analogue of Gauss hypergeometric function.All these forms of the Gauss hypergeometric function and their properties are presented in such a way that the reader can understand the working algorithm and apply the same for other special functions. This book is useful for UG and PG students, researchers and faculty members working in the field of special functions and related areas</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endliches Feld</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergeometrische Funktionen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineare und multilineare Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix-Argumente</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783111321455</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035452289</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111324586</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050115352 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T11:07:29Z |
institution | BVB |
isbn | 9783111324586 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035452289 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (XVI, 362 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FHA_PDA_DGG |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter |
record_format | marc |
spelling | Dwivedi, Ravi Verfasser aut Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions Ravi Dwivedi Berlin ; Boston De Gruyter [2024] 2025 1 Online-Ressource (XVI, 362 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 16. Dec 2024) This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix arguments, Gauss hypergeometric function with matrix parameters, the matrix-valued Gauss hypergeometric function, the finite field version, the extended Gauss hypergeometric function, the $(p, q)$- Gauss hypergeometric function, the incomplete Gauss hypergeometric function and the discrete analogue of Gauss hypergeometric function.All these forms of the Gauss hypergeometric function and their properties are presented in such a way that the reader can understand the working algorithm and apply the same for other special functions. This book is useful for UG and PG students, researchers and faculty members working in the field of special functions and related areas In English Endliches Feld Hypergeometrische Funktionen Lineare und multilineare Algebra Matrix-Argumente SCIENCE / Physics / Mathematical & Computational bisacsh Erscheint auch als Druck-Ausgabe 9783111321455 https://doi.org/10.1515/9783111324586 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dwivedi, Ravi Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions Endliches Feld Hypergeometrische Funktionen Lineare und multilineare Algebra Matrix-Argumente SCIENCE / Physics / Mathematical & Computational bisacsh |
title | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions |
title_auth | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions |
title_exact_search | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions |
title_full | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions Ravi Dwivedi |
title_fullStr | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions Ravi Dwivedi |
title_full_unstemmed | Gauss Hypergeometric Function Special Matrix Functions, q-Special Functions Ravi Dwivedi |
title_short | Gauss Hypergeometric Function |
title_sort | gauss hypergeometric function special matrix functions q special functions |
title_sub | Special Matrix Functions, q-Special Functions |
topic | Endliches Feld Hypergeometrische Funktionen Lineare und multilineare Algebra Matrix-Argumente SCIENCE / Physics / Mathematical & Computational bisacsh |
topic_facet | Endliches Feld Hypergeometrische Funktionen Lineare und multilineare Algebra Matrix-Argumente SCIENCE / Physics / Mathematical & Computational |
url | https://doi.org/10.1515/9783111324586 |
work_keys_str_mv | AT dwivediravi gausshypergeometricfunctionspecialmatrixfunctionsqspecialfunctions |