Learning for sequential manipulation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Technische Universität Berlin
2024
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext https://d-nb.info/1351410865/34 |
Beschreibung: | 328 Blätter Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-21355 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050112019 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 250108s2024 gw a||| m||| 00||| eng d | ||
015 | |a 25,O01 |2 dnb | ||
024 | 7 | |a 11303/22554 |2 hdl | |
035 | |a (DE-599)BVBBV050112019 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-83 | ||
084 | |8 1\p |a 629.892 |2 23ksdnb | ||
084 | |8 2\p |a 621.3 |2 23sdnb | ||
100 | 1 | |a Driess, Danny |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning for sequential manipulation |c vorgelegt von M.Sc. Danny Driess |
246 | 1 | 3 | |a Methoden maschinellen Lernens für sequenzielle Manipulationsprobleme |
264 | 1 | |a Berlin |b Technische Universität Berlin |c 2024 | |
300 | |a 328 Blätter |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2024 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 3\p |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |
650 | 0 | 7 | |8 4\p |a Bahnplanung |0 (DE-588)4267628-9 |2 gnd |
650 | 0 | 7 | |8 5\p |a Automatische Handlungsplanung |0 (DE-588)4211191-2 |2 gnd |
650 | 0 | 7 | |8 6\p |a Autonomer Roboter |0 (DE-588)4304075-5 |2 gnd |
650 | 0 | 7 | |8 7\p |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.14279/depositonce-21355 |w (DE-604)BV050112013 |
856 | 4 | 1 | |u https://doi.org/10.14279/depositonce-21355 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://hdl.handle.net/11303/22554 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:101:1-2412180103489.415245519327 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://d-nb.info/1351410865/34 |x Langzeitarchivierung Nationalbibliothek |
883 | 0 | |8 1\p |a emakn |c 0,96925 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,43634 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 0 | |8 3\p |a emagnd |c 0,27326 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 4\p |a emagnd |c 0,12655 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 5\p |a emagnd |c 0,09413 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 6\p |a emagnd |c 0,06250 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 7\p |a emagnd |c 0,04937 |d 20241218 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035448999 |
Datensatz im Suchindex
_version_ | 1820678281235529728 |
---|---|
adam_text | |
any_adam_object | |
author | Driess, Danny |
author_facet | Driess, Danny |
author_role | aut |
author_sort | Driess, Danny |
author_variant | d d dd |
building | Verbundindex |
bvnumber | BV050112019 |
ctrlnum | (DE-599)BVBBV050112019 |
doi_str_mv | 10.14279/depositonce-21355 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050112019</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">250108s2024 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">25,O01</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">11303/22554</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050112019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">629.892</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">621.3</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Driess, Danny</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning for sequential manipulation</subfield><subfield code="c">vorgelegt von M.Sc. Danny Driess</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Methoden maschinellen Lernens für sequenzielle Manipulationsprobleme</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Technische Universität Berlin</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">328 Blätter</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2024</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">3\p</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Bahnplanung</subfield><subfield code="0">(DE-588)4267628-9</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Automatische Handlungsplanung</subfield><subfield code="0">(DE-588)4211191-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">6\p</subfield><subfield code="a">Autonomer Roboter</subfield><subfield code="0">(DE-588)4304075-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">7\p</subfield><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.14279/depositonce-21355</subfield><subfield code="w">(DE-604)BV050112013</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.14279/depositonce-21355</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://hdl.handle.net/11303/22554</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:101:1-2412180103489.415245519327</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://d-nb.info/1351410865/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,96925</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,43634</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,27326</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,12655</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,09413</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,06250</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,04937</subfield><subfield code="d">20241218</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035448999</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV050112019 |
illustrated | Illustrated |
indexdate | 2025-01-08T11:01:55Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035448999 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | 328 Blätter Illustrationen, Diagramme |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Technische Universität Berlin |
record_format | marc |
spelling | Driess, Danny Verfasser aut Learning for sequential manipulation vorgelegt von M.Sc. Danny Driess Methoden maschinellen Lernens für sequenzielle Manipulationsprobleme Berlin Technische Universität Berlin 2024 328 Blätter Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Berlin 2024 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Bahnplanung (DE-588)4267628-9 gnd 5\p Automatische Handlungsplanung (DE-588)4211191-2 gnd 6\p Autonomer Roboter (DE-588)4304075-5 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe 10.14279/depositonce-21355 (DE-604)BV050112013 https://doi.org/10.14279/depositonce-21355 Resolving-System kostenfrei Volltext https://hdl.handle.net/11303/22554 Resolving-System kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:101:1-2412180103489.415245519327 Resolving-System kostenfrei Volltext https://d-nb.info/1351410865/34 Langzeitarchivierung Nationalbibliothek 1\p emakn 0,96925 20241218 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,43634 20241218 DE-101 https://d-nb.info/provenance/plan#emasg 3\p emagnd 0,27326 20241218 DE-101 https://d-nb.info/provenance/plan#emagnd 4\p emagnd 0,12655 20241218 DE-101 https://d-nb.info/provenance/plan#emagnd 5\p emagnd 0,09413 20241218 DE-101 https://d-nb.info/provenance/plan#emagnd 6\p emagnd 0,06250 20241218 DE-101 https://d-nb.info/provenance/plan#emagnd 7\p emagnd 0,04937 20241218 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Driess, Danny Learning for sequential manipulation 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Bahnplanung (DE-588)4267628-9 gnd 5\p Automatische Handlungsplanung (DE-588)4211191-2 gnd 6\p Autonomer Roboter (DE-588)4304075-5 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4267628-9 (DE-588)4211191-2 (DE-588)4304075-5 (DE-588)4226127-2 (DE-588)4113937-9 |
title | Learning for sequential manipulation |
title_alt | Methoden maschinellen Lernens für sequenzielle Manipulationsprobleme |
title_auth | Learning for sequential manipulation |
title_exact_search | Learning for sequential manipulation |
title_full | Learning for sequential manipulation vorgelegt von M.Sc. Danny Driess |
title_fullStr | Learning for sequential manipulation vorgelegt von M.Sc. Danny Driess |
title_full_unstemmed | Learning for sequential manipulation vorgelegt von M.Sc. Danny Driess |
title_short | Learning for sequential manipulation |
title_sort | learning for sequential manipulation |
topic | 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Bahnplanung (DE-588)4267628-9 gnd 5\p Automatische Handlungsplanung (DE-588)4211191-2 gnd 6\p Autonomer Roboter (DE-588)4304075-5 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Maschinelles Lernen Bahnplanung Automatische Handlungsplanung Autonomer Roboter Neuronales Netz Hochschulschrift |
url | https://doi.org/10.14279/depositonce-21355 https://hdl.handle.net/11303/22554 https://nbn-resolving.org/urn:nbn:de:101:1-2412180103489.415245519327 https://d-nb.info/1351410865/34 |
work_keys_str_mv | AT driessdanny learningforsequentialmanipulation AT driessdanny methodenmaschinellenlernensfursequenziellemanipulationsprobleme |