The effects of differential equation based knowledge embedding strategies in deep learning models: an investigation on how to model physico-chemical processes with neural networks
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Technische Universität Berlin
2024
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext https://d-nb.info/1349432318/34 |
Beschreibung: | 1 Online-Ressource (xxvi, 187 Seiten) Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-22011 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050079371 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241211s2024 gw a||| om||| 00||| eng d | ||
015 | |a 24,O12 |2 dnb | ||
016 | 7 | |a 1349432318 |2 DE-101 | |
024 | 7 | |a 10.14279/depositonce-22011 |2 doi | |
024 | 7 | |a urn:nbn:de:101:1-2411270103313.752753900641 |2 urn | |
024 | 7 | |a 11303/23197 |2 hdl | |
035 | |a (DE-599)DNB1349432318 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-83 | ||
084 | |8 1\p |a 650 |2 23sdnb | ||
100 | 1 | |a März, Christian-Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a The effects of differential equation based knowledge embedding strategies in deep learning models |b an investigation on how to model physico-chemical processes with neural networks |c vorgelegt von M. Sc. Christian-Thomas März |
246 | 1 | 3 | |a Die Auswirkungen von auf Differentialgleichungen basierenden Wissenseinbettungsstrategien in Deep-Learning-Modellen |
264 | 1 | |a Berlin |b Technische Universität Berlin |c 2024 | |
300 | |a 1 Online-Ressource (xxvi, 187 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2024 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |w (DE-604)BV050079374 |
856 | 4 | 0 | |u https://doi.org/10.14279/depositonce-22011 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://hdl.handle.net/11303/23197 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:101:1-2411270103313.752753900641 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1349432318/34 |x Langzeitarchivierung Nationalbibliothek |
883 | 0 | |8 1\p |a emasg |c 0,37104 |d 20241127 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035416645 |
Datensatz im Suchindex
_version_ | 1818141514757308416 |
---|---|
adam_text | |
any_adam_object | |
author | März, Christian-Thomas |
author_facet | März, Christian-Thomas |
author_role | aut |
author_sort | März, Christian-Thomas |
author_variant | c t m ctm |
building | Verbundindex |
bvnumber | BV050079371 |
collection | ebook |
ctrlnum | (DE-599)DNB1349432318 |
doi_str_mv | 10.14279/depositonce-22011 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050079371</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241211s2024 gw a||| om||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,O12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1349432318</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14279/depositonce-22011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-2411270103313.752753900641</subfield><subfield code="2">urn</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">11303/23197</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1349432318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">650</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">März, Christian-Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The effects of differential equation based knowledge embedding strategies in deep learning models</subfield><subfield code="b">an investigation on how to model physico-chemical processes with neural networks</subfield><subfield code="c">vorgelegt von M. Sc. Christian-Thomas März</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Die Auswirkungen von auf Differentialgleichungen basierenden Wissenseinbettungsstrategien in Deep-Learning-Modellen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Technische Universität Berlin</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvi, 187 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2024</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="w">(DE-604)BV050079374</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14279/depositonce-22011</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hdl.handle.net/11303/23197</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:101:1-2411270103313.752753900641</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1349432318/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,37104</subfield><subfield code="d">20241127</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035416645</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV050079371 |
illustrated | Illustrated |
indexdate | 2024-12-11T11:01:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035416645 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xxvi, 187 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Technische Universität Berlin |
record_format | marc |
spelling | März, Christian-Thomas Verfasser aut The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks vorgelegt von M. Sc. Christian-Thomas März Die Auswirkungen von auf Differentialgleichungen basierenden Wissenseinbettungsstrategien in Deep-Learning-Modellen Berlin Technische Universität Berlin 2024 1 Online-Ressource (xxvi, 187 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Technische Universität Berlin 2024 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Druck-Ausgabe (DE-604)BV050079374 https://doi.org/10.14279/depositonce-22011 Resolving-System kostenfrei Volltext https://hdl.handle.net/11303/23197 Resolving-System kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:101:1-2411270103313.752753900641 Resolving-System kostenfrei Volltext https://d-nb.info/1349432318/34 Langzeitarchivierung Nationalbibliothek 1\p emasg 0,37104 20241127 DE-101 https://d-nb.info/provenance/plan#emasg |
spellingShingle | März, Christian-Thomas The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks |
subject_GND | (DE-588)4113937-9 |
title | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks |
title_alt | Die Auswirkungen von auf Differentialgleichungen basierenden Wissenseinbettungsstrategien in Deep-Learning-Modellen |
title_auth | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks |
title_exact_search | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks |
title_full | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks vorgelegt von M. Sc. Christian-Thomas März |
title_fullStr | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks vorgelegt von M. Sc. Christian-Thomas März |
title_full_unstemmed | The effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico-chemical processes with neural networks vorgelegt von M. Sc. Christian-Thomas März |
title_short | The effects of differential equation based knowledge embedding strategies in deep learning models |
title_sort | the effects of differential equation based knowledge embedding strategies in deep learning models an investigation on how to model physico chemical processes with neural networks |
title_sub | an investigation on how to model physico-chemical processes with neural networks |
topic_facet | Hochschulschrift |
url | https://doi.org/10.14279/depositonce-22011 https://hdl.handle.net/11303/23197 https://nbn-resolving.org/urn:nbn:de:101:1-2411270103313.752753900641 https://d-nb.info/1349432318/34 |
work_keys_str_mv | AT marzchristianthomas theeffectsofdifferentialequationbasedknowledgeembeddingstrategiesindeeplearningmodelsaninvestigationonhowtomodelphysicochemicalprocesseswithneuralnetworks AT marzchristianthomas dieauswirkungenvonaufdifferentialgleichungenbasierendenwissenseinbettungsstrategienindeeplearningmodellen |