A new measurement approach for identifying high-polluting jobs across European countries:
This paper develops a novel classification of high-polluting occupations for a large sample of European countries. Unlike previous efforts in the literature, the classification exploits country-level data on air polluting emission intensity by industry. The country-level data allows to capture impor...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2024
|
Schriftenreihe: | OECD Economics Department Working Papers
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This paper develops a novel classification of high-polluting occupations for a large sample of European countries. Unlike previous efforts in the literature, the classification exploits country-level data on air polluting emission intensity by industry. The country-level data allows to capture important cross-country differences, due to differences in technology and in production focus. Applying the new classification to European Labour Force Survey data shows that, on average across the countries covered, about 4% of workers are employed in high-polluting jobs, ranging from 9% in Czechia and the Slovak Republic to around 2% in Austria. These shares do not exhibit any clear decreasing trend over the past decade. High-polluting jobs are unequally distributed, being over-represented among men, workers with lower and medium educational attainment and those living in rural areas |
Beschreibung: | 1 Online-Ressource (26 Seiten) 21 x 28cm |
DOI: | 10.1787/f5127e4c-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050073894 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241209s2024 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/f5127e4c-en |2 doi | |
035 | |a (ZDB-13-SOC)104404493 | ||
035 | |a (DE-599)BVBBV050073894 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 | ||
100 | 1 | |a Causa, Orsetta |e Verfasser |4 aut | |
245 | 1 | 0 | |a A new measurement approach for identifying high-polluting jobs across European countries |c Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani |
264 | 1 | |a Paris |b OECD Publishing |c 2024 | |
300 | |a 1 Online-Ressource (26 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Economics Department Working Papers | |
520 | |a This paper develops a novel classification of high-polluting occupations for a large sample of European countries. Unlike previous efforts in the literature, the classification exploits country-level data on air polluting emission intensity by industry. The country-level data allows to capture important cross-country differences, due to differences in technology and in production focus. Applying the new classification to European Labour Force Survey data shows that, on average across the countries covered, about 4% of workers are employed in high-polluting jobs, ranging from 9% in Czechia and the Slovak Republic to around 2% in Austria. These shares do not exhibit any clear decreasing trend over the past decade. High-polluting jobs are unequally distributed, being over-represented among men, workers with lower and medium educational attainment and those living in rural areas | ||
650 | 4 | |a Economics | |
700 | 1 | |a Nguyen, Maxime |4 ctb | |
700 | 1 | |a Soldani, Emilia |4 ctb | |
856 | 4 | 0 | |u https://doi.org/10.1787/f5127e4c-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035411256 |
Datensatz im Suchindex
_version_ | 1817990475447009280 |
---|---|
adam_text | |
any_adam_object | |
author | Causa, Orsetta |
author2 | Nguyen, Maxime Soldani, Emilia |
author2_role | ctb ctb |
author2_variant | m n mn e s es |
author_facet | Causa, Orsetta Nguyen, Maxime Soldani, Emilia |
author_role | aut |
author_sort | Causa, Orsetta |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV050073894 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)104404493 (DE-599)BVBBV050073894 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/f5127e4c-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050073894</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241209s2024 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/f5127e4c-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)104404493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050073894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Causa, Orsetta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new measurement approach for identifying high-polluting jobs across European countries</subfield><subfield code="c">Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (26 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Economics Department Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a novel classification of high-polluting occupations for a large sample of European countries. Unlike previous efforts in the literature, the classification exploits country-level data on air polluting emission intensity by industry. The country-level data allows to capture important cross-country differences, due to differences in technology and in production focus. Applying the new classification to European Labour Force Survey data shows that, on average across the countries covered, about 4% of workers are employed in high-polluting jobs, ranging from 9% in Czechia and the Slovak Republic to around 2% in Austria. These shares do not exhibit any clear decreasing trend over the past decade. High-polluting jobs are unequally distributed, being over-represented among men, workers with lower and medium educational attainment and those living in rural areas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Maxime</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soldani, Emilia</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/f5127e4c-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035411256</subfield></datafield></record></collection> |
id | DE-604.BV050073894 |
illustrated | Not Illustrated |
indexdate | 2024-12-09T19:00:23Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035411256 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 |
physical | 1 Online-Ressource (26 Seiten) 21 x 28cm |
psigel | ZDB-13-SOC |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Economics Department Working Papers |
spelling | Causa, Orsetta Verfasser aut A new measurement approach for identifying high-polluting jobs across European countries Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani Paris OECD Publishing 2024 1 Online-Ressource (26 Seiten) 21 x 28cm txt rdacontent c rdamedia cr rdacarrier OECD Economics Department Working Papers This paper develops a novel classification of high-polluting occupations for a large sample of European countries. Unlike previous efforts in the literature, the classification exploits country-level data on air polluting emission intensity by industry. The country-level data allows to capture important cross-country differences, due to differences in technology and in production focus. Applying the new classification to European Labour Force Survey data shows that, on average across the countries covered, about 4% of workers are employed in high-polluting jobs, ranging from 9% in Czechia and the Slovak Republic to around 2% in Austria. These shares do not exhibit any clear decreasing trend over the past decade. High-polluting jobs are unequally distributed, being over-represented among men, workers with lower and medium educational attainment and those living in rural areas Economics Nguyen, Maxime ctb Soldani, Emilia ctb https://doi.org/10.1787/f5127e4c-en Verlag kostenfrei Volltext |
spellingShingle | Causa, Orsetta A new measurement approach for identifying high-polluting jobs across European countries Economics |
title | A new measurement approach for identifying high-polluting jobs across European countries |
title_auth | A new measurement approach for identifying high-polluting jobs across European countries |
title_exact_search | A new measurement approach for identifying high-polluting jobs across European countries |
title_full | A new measurement approach for identifying high-polluting jobs across European countries Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani |
title_fullStr | A new measurement approach for identifying high-polluting jobs across European countries Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani |
title_full_unstemmed | A new measurement approach for identifying high-polluting jobs across European countries Orsetta, Causa, Maxime, Nguyen and Emilia, Soldani |
title_short | A new measurement approach for identifying high-polluting jobs across European countries |
title_sort | a new measurement approach for identifying high polluting jobs across european countries |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/f5127e4c-en |
work_keys_str_mv | AT causaorsetta anewmeasurementapproachforidentifyinghighpollutingjobsacrosseuropeancountries AT nguyenmaxime anewmeasurementapproachforidentifyinghighpollutingjobsacrosseuropeancountries AT soldaniemilia anewmeasurementapproachforidentifyinghighpollutingjobsacrosseuropeancountries |