Advances in machine learning and image analysis for GeoAI:
Advances in Machine Learning and Image Analysis for GeoAI presents recent advances in applications and algorithms that are at the intersection of Geospatial imaging and Artificial Intelligence (GeoAI). The book covers algorithmic advances in geospatial image analysis, sensor fusion across modalities...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; London ; Cambridge, MA
Elsevier
[2024]
|
Schlagworte: | |
Online-Zugang: | DE-706 Volltext |
Zusammenfassung: | Advances in Machine Learning and Image Analysis for GeoAI presents recent advances in applications and algorithms that are at the intersection of Geospatial imaging and Artificial Intelligence (GeoAI). The book covers algorithmic advances in geospatial image analysis, sensor fusion across modalities, few-shot open-set recognition, explainable AI for Earth Observations, self-supervised learning, image superresolution, Visual Question Answering, and spectral unmixing, among other topics. This book offers a comprehensive resource for graduate students, researchers, and practitioners in the area of geospatial image analysis. It provides detailed descriptions of the latest techniques, best practices, and insights essential for implementing deep learning strategies in GeoAI research and applications |
Beschreibung: | 1 Online-Ressource (xii, 352 Seiten) Illustrationen, Diagramme |
ISBN: | 9780443190773 |
DOI: | 10.1016/C2022-0-00952-1 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050071466 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241205s2024 ne a||| o|||| 00||| eng d | ||
020 | |a 9780443190773 |9 978-0-443-19077-3 | ||
024 | 7 | |a 10.1016/C2022-0-00952-1 |2 doi | |
035 | |a (ZDB-33-EBS)9780443190773 | ||
035 | |a (DE-599)BVBBV050071466 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a ne |c XA-NL |a xxk |c XA-GB |a xxu |c XD-US | ||
049 | |a DE-706 | ||
084 | |a 54.72 |2 bkl | ||
084 | |a 54.74 |2 bkl | ||
084 | |a 74.48 |2 bkl | ||
245 | 1 | 0 | |a Advances in machine learning and image analysis for GeoAI |c Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China) |
246 | 1 | 3 | |a Geospatial artificial intelligence |
246 | 1 | 0 | |a Geospatial artificial intelligence |
264 | 1 | |a Amsterdam ; London ; Cambridge, MA |b Elsevier |c [2024] | |
300 | |a 1 Online-Ressource (xii, 352 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Advances in Machine Learning and Image Analysis for GeoAI presents recent advances in applications and algorithms that are at the intersection of Geospatial imaging and Artificial Intelligence (GeoAI). The book covers algorithmic advances in geospatial image analysis, sensor fusion across modalities, few-shot open-set recognition, explainable AI for Earth Observations, self-supervised learning, image superresolution, Visual Question Answering, and spectral unmixing, among other topics. This book offers a comprehensive resource for graduate students, researchers, and practitioners in the area of geospatial image analysis. It provides detailed descriptions of the latest techniques, best practices, and insights essential for implementing deep learning strategies in GeoAI research and applications | |
650 | 0 | 7 | |a Satellitenbild |0 (DE-588)4179145-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Räumliche Verteilung |0 (DE-588)4121550-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prospektion |0 (DE-588)4047505-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umweltüberwachung |0 (DE-588)4278451-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpretation |0 (DE-588)4072905-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geostatistik |0 (DE-588)4020279-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Satellitenfernerkundung |0 (DE-588)4224344-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fernerkundung |0 (DE-588)4016796-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Luftbildauswertung |0 (DE-588)4139867-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumdaten |0 (DE-588)4206012-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperspektraler Sensor |0 (DE-588)1078791082 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Satellitenbildauswertung |0 (DE-588)4116326-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geoinformation |0 (DE-588)4429674-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildauswertung |0 (DE-588)4145394-3 |2 gnd |9 rswk-swf |
653 | 0 | |a BUSINESS & ECONOMICS / Operations Research | |
653 | 0 | |a COM094000 | |
653 | 0 | |a COMPUTERS / Enterprise Applications | |
653 | 0 | |a Enterprise software | |
653 | 0 | |a Geographical information systems (GIS) & remote sensing | |
653 | 0 | |a Geographische Informationssysteme (GIS) und Fernerkundung | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Maschinelles Lernen | |
653 | 0 | |a Operational research | |
653 | 0 | |a TECHNOLOGY & ENGINEERING / Remote Sensing & Geographic Information Systems | |
653 | 0 | |a Unternehmensforschung | |
653 | 0 | |a Unternehmenssoftware | |
689 | 0 | 0 | |a Fernerkundung |0 (DE-588)4016796-3 |D s |
689 | 0 | 1 | |a Satellitenbildauswertung |0 (DE-588)4116326-6 |D s |
689 | 0 | 2 | |a Luftbildauswertung |0 (DE-588)4139867-1 |D s |
689 | 0 | 3 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 4 | |a Prospektion |0 (DE-588)4047505-0 |D s |
689 | 0 | 5 | |a Räumliche Verteilung |0 (DE-588)4121550-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hyperspektraler Sensor |0 (DE-588)1078791082 |D s |
689 | 1 | 1 | |a Bildauswertung |0 (DE-588)4145394-3 |D s |
689 | 1 | 2 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 1 | 3 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 4 | |a Satellitenbild |0 (DE-588)4179145-9 |D s |
689 | 1 | 5 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Geostatistik |0 (DE-588)4020279-3 |D s |
689 | 2 | 1 | |a Interpretation |0 (DE-588)4072905-9 |D s |
689 | 2 | 2 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 2 | 3 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 2 | 4 | |a Satellitenfernerkundung |0 (DE-588)4224344-0 |D s |
689 | 2 | 5 | |a Umweltüberwachung |0 (DE-588)4278451-7 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Geostatistik |0 (DE-588)4020279-3 |D s |
689 | 3 | 1 | |a Geoinformation |0 (DE-588)4429674-5 |D s |
689 | 3 | 2 | |a Raumdaten |0 (DE-588)4206012-6 |D s |
689 | 3 | 3 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Prasad, Saurabh |d ca. 20./21. Jahrhundert |0 (DE-588)120974922X |4 edt | |
700 | 1 | |a Chanussot, Jocelyn |0 (DE-588)1198335564 |4 edt | |
700 | 1 | |a Li, Jun |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-443-19077-3 |
856 | 4 | 0 | |u https://doi.org/10.1016/C2022-0-00952-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-EBS | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035408870 | |
966 | e | |u https://doi.org/10.1016/C2022-0-00952-1 |l DE-706 |p ZDB-33-EBS |q UBY_PDA_EBS_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817605470539481088 |
---|---|
adam_text | |
any_adam_object | |
author2 | Prasad, Saurabh ca. 20./21. Jahrhundert Chanussot, Jocelyn Li, Jun |
author2_role | edt edt edt |
author2_variant | s p sp j c jc j l jl |
author_GND | (DE-588)120974922X (DE-588)1198335564 |
author_facet | Prasad, Saurabh ca. 20./21. Jahrhundert Chanussot, Jocelyn Li, Jun |
building | Verbundindex |
bvnumber | BV050071466 |
collection | ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)9780443190773 (DE-599)BVBBV050071466 |
doi_str_mv | 10.1016/C2022-0-00952-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050071466</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241205s2024 ne a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780443190773</subfield><subfield code="9">978-0-443-19077-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2022-0-00952-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)9780443190773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050071466</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in machine learning and image analysis for GeoAI</subfield><subfield code="c">Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Geospatial artificial intelligence</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">Geospatial artificial intelligence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; London ; Cambridge, MA</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 352 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Advances in Machine Learning and Image Analysis for GeoAI presents recent advances in applications and algorithms that are at the intersection of Geospatial imaging and Artificial Intelligence (GeoAI). The book covers algorithmic advances in geospatial image analysis, sensor fusion across modalities, few-shot open-set recognition, explainable AI for Earth Observations, self-supervised learning, image superresolution, Visual Question Answering, and spectral unmixing, among other topics. This book offers a comprehensive resource for graduate students, researchers, and practitioners in the area of geospatial image analysis. It provides detailed descriptions of the latest techniques, best practices, and insights essential for implementing deep learning strategies in GeoAI research and applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Satellitenbild</subfield><subfield code="0">(DE-588)4179145-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Räumliche Verteilung</subfield><subfield code="0">(DE-588)4121550-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prospektion</subfield><subfield code="0">(DE-588)4047505-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umweltüberwachung</subfield><subfield code="0">(DE-588)4278451-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpretation</subfield><subfield code="0">(DE-588)4072905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geostatistik</subfield><subfield code="0">(DE-588)4020279-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Satellitenfernerkundung</subfield><subfield code="0">(DE-588)4224344-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fernerkundung</subfield><subfield code="0">(DE-588)4016796-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Luftbildauswertung</subfield><subfield code="0">(DE-588)4139867-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperspektraler Sensor</subfield><subfield code="0">(DE-588)1078791082</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Satellitenbildauswertung</subfield><subfield code="0">(DE-588)4116326-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geoinformation</subfield><subfield code="0">(DE-588)4429674-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildauswertung</subfield><subfield code="0">(DE-588)4145394-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Operations Research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COM094000</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Enterprise Applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Enterprise software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geographical information systems (GIS) & remote sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geographische Informationssysteme (GIS) und Fernerkundung</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Operational research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY & ENGINEERING / Remote Sensing & Geographic Information Systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Unternehmensforschung</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Unternehmenssoftware</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fernerkundung</subfield><subfield code="0">(DE-588)4016796-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Satellitenbildauswertung</subfield><subfield code="0">(DE-588)4116326-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Luftbildauswertung</subfield><subfield code="0">(DE-588)4139867-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Prospektion</subfield><subfield code="0">(DE-588)4047505-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Räumliche Verteilung</subfield><subfield code="0">(DE-588)4121550-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperspektraler Sensor</subfield><subfield code="0">(DE-588)1078791082</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bildauswertung</subfield><subfield code="0">(DE-588)4145394-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Satellitenbild</subfield><subfield code="0">(DE-588)4179145-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geostatistik</subfield><subfield code="0">(DE-588)4020279-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Interpretation</subfield><subfield code="0">(DE-588)4072905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="4"><subfield code="a">Satellitenfernerkundung</subfield><subfield code="0">(DE-588)4224344-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="5"><subfield code="a">Umweltüberwachung</subfield><subfield code="0">(DE-588)4278451-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geostatistik</subfield><subfield code="0">(DE-588)4020279-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Geoinformation</subfield><subfield code="0">(DE-588)4429674-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Saurabh</subfield><subfield code="d">ca. 20./21. Jahrhundert</subfield><subfield code="0">(DE-588)120974922X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chanussot, Jocelyn</subfield><subfield code="0">(DE-588)1198335564</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jun</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-443-19077-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/C2022-0-00952-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035408870</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/C2022-0-00952-1</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-33-EBS</subfield><subfield code="q">UBY_PDA_EBS_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050071466 |
illustrated | Illustrated |
indexdate | 2024-12-05T13:00:54Z |
institution | BVB |
isbn | 9780443190773 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035408870 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (xii, 352 Seiten) Illustrationen, Diagramme |
psigel | ZDB-33-EBS ZDB-33-EBS UBY_PDA_EBS_Kauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Elsevier |
record_format | marc |
spelling | Advances in machine learning and image analysis for GeoAI Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China) Geospatial artificial intelligence Amsterdam ; London ; Cambridge, MA Elsevier [2024] 1 Online-Ressource (xii, 352 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Advances in Machine Learning and Image Analysis for GeoAI presents recent advances in applications and algorithms that are at the intersection of Geospatial imaging and Artificial Intelligence (GeoAI). The book covers algorithmic advances in geospatial image analysis, sensor fusion across modalities, few-shot open-set recognition, explainable AI for Earth Observations, self-supervised learning, image superresolution, Visual Question Answering, and spectral unmixing, among other topics. This book offers a comprehensive resource for graduate students, researchers, and practitioners in the area of geospatial image analysis. It provides detailed descriptions of the latest techniques, best practices, and insights essential for implementing deep learning strategies in GeoAI research and applications Satellitenbild (DE-588)4179145-9 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Räumliche Verteilung (DE-588)4121550-3 gnd rswk-swf Prospektion (DE-588)4047505-0 gnd rswk-swf Umweltüberwachung (DE-588)4278451-7 gnd rswk-swf Interpretation (DE-588)4072905-9 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Geostatistik (DE-588)4020279-3 gnd rswk-swf Satellitenfernerkundung (DE-588)4224344-0 gnd rswk-swf Fernerkundung (DE-588)4016796-3 gnd rswk-swf Luftbildauswertung (DE-588)4139867-1 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Raumdaten (DE-588)4206012-6 gnd rswk-swf Hyperspektraler Sensor (DE-588)1078791082 gnd rswk-swf Satellitenbildauswertung (DE-588)4116326-6 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Geoinformation (DE-588)4429674-5 gnd rswk-swf Bildauswertung (DE-588)4145394-3 gnd rswk-swf BUSINESS & ECONOMICS / Operations Research COM094000 COMPUTERS / Enterprise Applications Enterprise software Geographical information systems (GIS) & remote sensing Geographische Informationssysteme (GIS) und Fernerkundung Machine learning Maschinelles Lernen Operational research TECHNOLOGY & ENGINEERING / Remote Sensing & Geographic Information Systems Unternehmensforschung Unternehmenssoftware Fernerkundung (DE-588)4016796-3 s Satellitenbildauswertung (DE-588)4116326-6 s Luftbildauswertung (DE-588)4139867-1 s Mustererkennung (DE-588)4040936-3 s Prospektion (DE-588)4047505-0 s Räumliche Verteilung (DE-588)4121550-3 s DE-604 Hyperspektraler Sensor (DE-588)1078791082 s Bildauswertung (DE-588)4145394-3 s Deep learning (DE-588)1135597375 s Data Mining (DE-588)4428654-5 s Satellitenbild (DE-588)4179145-9 s Maschinelles Lernen (DE-588)4193754-5 s Geostatistik (DE-588)4020279-3 s Interpretation (DE-588)4072905-9 s Prognose (DE-588)4047390-9 s Satellitenfernerkundung (DE-588)4224344-0 s Umweltüberwachung (DE-588)4278451-7 s Geoinformation (DE-588)4429674-5 s Raumdaten (DE-588)4206012-6 s Künstliche Intelligenz (DE-588)4033447-8 s Prasad, Saurabh ca. 20./21. Jahrhundert (DE-588)120974922X edt Chanussot, Jocelyn (DE-588)1198335564 edt Li, Jun edt Erscheint auch als Druck-Ausgabe 978-0-443-19077-3 https://doi.org/10.1016/C2022-0-00952-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Advances in machine learning and image analysis for GeoAI Satellitenbild (DE-588)4179145-9 gnd Data Mining (DE-588)4428654-5 gnd Räumliche Verteilung (DE-588)4121550-3 gnd Prospektion (DE-588)4047505-0 gnd Umweltüberwachung (DE-588)4278451-7 gnd Interpretation (DE-588)4072905-9 gnd Prognose (DE-588)4047390-9 gnd Geostatistik (DE-588)4020279-3 gnd Satellitenfernerkundung (DE-588)4224344-0 gnd Fernerkundung (DE-588)4016796-3 gnd Luftbildauswertung (DE-588)4139867-1 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Raumdaten (DE-588)4206012-6 gnd Hyperspektraler Sensor (DE-588)1078791082 gnd Satellitenbildauswertung (DE-588)4116326-6 gnd Deep learning (DE-588)1135597375 gnd Geoinformation (DE-588)4429674-5 gnd Bildauswertung (DE-588)4145394-3 gnd |
subject_GND | (DE-588)4179145-9 (DE-588)4428654-5 (DE-588)4121550-3 (DE-588)4047505-0 (DE-588)4278451-7 (DE-588)4072905-9 (DE-588)4047390-9 (DE-588)4020279-3 (DE-588)4224344-0 (DE-588)4016796-3 (DE-588)4139867-1 (DE-588)4040936-3 (DE-588)4193754-5 (DE-588)4033447-8 (DE-588)4206012-6 (DE-588)1078791082 (DE-588)4116326-6 (DE-588)1135597375 (DE-588)4429674-5 (DE-588)4145394-3 |
title | Advances in machine learning and image analysis for GeoAI |
title_alt | Geospatial artificial intelligence |
title_auth | Advances in machine learning and image analysis for GeoAI |
title_exact_search | Advances in machine learning and image analysis for GeoAI |
title_full | Advances in machine learning and image analysis for GeoAI Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China) |
title_fullStr | Advances in machine learning and image analysis for GeoAI Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China) |
title_full_unstemmed | Advances in machine learning and image analysis for GeoAI Saurabh Prasad (Department of Electrical and Comupter Engineering, University of Huston, Huston, TX, United States), Jocelyn Chanussot (INRIA, Grenoble, France), Jun Li (China University of Geosciences, Wihan, China) |
title_short | Advances in machine learning and image analysis for GeoAI |
title_sort | advances in machine learning and image analysis for geoai |
topic | Satellitenbild (DE-588)4179145-9 gnd Data Mining (DE-588)4428654-5 gnd Räumliche Verteilung (DE-588)4121550-3 gnd Prospektion (DE-588)4047505-0 gnd Umweltüberwachung (DE-588)4278451-7 gnd Interpretation (DE-588)4072905-9 gnd Prognose (DE-588)4047390-9 gnd Geostatistik (DE-588)4020279-3 gnd Satellitenfernerkundung (DE-588)4224344-0 gnd Fernerkundung (DE-588)4016796-3 gnd Luftbildauswertung (DE-588)4139867-1 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Raumdaten (DE-588)4206012-6 gnd Hyperspektraler Sensor (DE-588)1078791082 gnd Satellitenbildauswertung (DE-588)4116326-6 gnd Deep learning (DE-588)1135597375 gnd Geoinformation (DE-588)4429674-5 gnd Bildauswertung (DE-588)4145394-3 gnd |
topic_facet | Satellitenbild Data Mining Räumliche Verteilung Prospektion Umweltüberwachung Interpretation Prognose Geostatistik Satellitenfernerkundung Fernerkundung Luftbildauswertung Mustererkennung Maschinelles Lernen Künstliche Intelligenz Raumdaten Hyperspektraler Sensor Satellitenbildauswertung Deep learning Geoinformation Bildauswertung |
url | https://doi.org/10.1016/C2022-0-00952-1 |
work_keys_str_mv | AT prasadsaurabh advancesinmachinelearningandimageanalysisforgeoai AT chanussotjocelyn advancesinmachinelearningandimageanalysisforgeoai AT lijun advancesinmachinelearningandimageanalysisforgeoai AT prasadsaurabh geospatialartificialintelligence AT chanussotjocelyn geospatialartificialintelligence AT lijun geospatialartificialintelligence |