Federated and continual learning with deep learning methods for natural language text understanding:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
München
2024
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 183 Seiten Illustrationen, Diagramme |
DOI: | 10.5282/edoc.34444 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050067828 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 241204s2024 gw a||| m||| 00||| eng d | ||
015 | |a 25,O01 |2 dnb | ||
035 | |a (DE-599)BVBBV050067828 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 2\p |a 650 |2 23sdnb | ||
084 | |8 1\p |a 658.4038 |2 23ksdnb | ||
100 | 1 | |a Chaudhary, Yatin |e Verfasser |0 (DE-588)1350218561 |4 aut | |
245 | 1 | 0 | |a Federated and continual learning with deep learning methods for natural language text understanding |c Yatin Chaudhary |
264 | 1 | |a München |c 2024 | |
300 | |a 183 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c München, Ludwig-Maximilians-Universität |d 2024 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 3\p |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |
650 | 0 | 7 | |8 4\p |a Deep learning |0 (DE-588)1135597375 |2 gnd |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:19-343238 |o 10.5282/edoc.34444 |
856 | 4 | 1 | |u https://doi.org/10.5282/edoc.34444 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:19-343238 |x Resolving-System |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,34534 |d 20241203 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,35146 |d 20241203 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 0 | |8 3\p |a emagnd |c 0,10293 |d 20241203 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 4\p |a emagnd |c 0,07906 |d 20241203 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035405280 |
Datensatz im Suchindex
_version_ | 1817507314679152640 |
---|---|
adam_text | |
any_adam_object | |
author | Chaudhary, Yatin |
author_GND | (DE-588)1350218561 |
author_facet | Chaudhary, Yatin |
author_role | aut |
author_sort | Chaudhary, Yatin |
author_variant | y c yc |
building | Verbundindex |
bvnumber | BV050067828 |
collection | ebook |
ctrlnum | (DE-599)BVBBV050067828 |
doi_str_mv | 10.5282/edoc.34444 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050067828</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241204s2024 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">25,O01</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050067828</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">650</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">658.4038</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chaudhary, Yatin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1350218561</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Federated and continual learning with deep learning methods for natural language text understanding</subfield><subfield code="c">Yatin Chaudhary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">183 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">München, Ludwig-Maximilians-Universität</subfield><subfield code="d">2024</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">3\p</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:19-343238</subfield><subfield code="o">10.5282/edoc.34444</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.5282/edoc.34444</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:19-343238</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,34534</subfield><subfield code="d">20241203</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,35146</subfield><subfield code="d">20241203</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,10293</subfield><subfield code="d">20241203</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,07906</subfield><subfield code="d">20241203</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035405280</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV050067828 |
illustrated | Illustrated |
indexdate | 2024-12-04T11:00:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035405280 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 183 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
record_format | marc |
spelling | Chaudhary, Yatin Verfasser (DE-588)1350218561 aut Federated and continual learning with deep learning methods for natural language text understanding Yatin Chaudhary München 2024 183 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation München, Ludwig-Maximilians-Universität 2024 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Deep learning (DE-588)1135597375 gnd (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:19-343238 10.5282/edoc.34444 https://doi.org/10.5282/edoc.34444 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:19-343238 Resolving-System kostenfrei Volltext 1\p emakn 0,34534 20241203 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,35146 20241203 DE-101 https://d-nb.info/provenance/plan#emasg 3\p emagnd 0,10293 20241203 DE-101 https://d-nb.info/provenance/plan#emagnd 4\p emagnd 0,07906 20241203 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Chaudhary, Yatin Federated and continual learning with deep learning methods for natural language text understanding 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1135597375 (DE-588)4113937-9 |
title | Federated and continual learning with deep learning methods for natural language text understanding |
title_auth | Federated and continual learning with deep learning methods for natural language text understanding |
title_exact_search | Federated and continual learning with deep learning methods for natural language text understanding |
title_full | Federated and continual learning with deep learning methods for natural language text understanding Yatin Chaudhary |
title_fullStr | Federated and continual learning with deep learning methods for natural language text understanding Yatin Chaudhary |
title_full_unstemmed | Federated and continual learning with deep learning methods for natural language text understanding Yatin Chaudhary |
title_short | Federated and continual learning with deep learning methods for natural language text understanding |
title_sort | federated and continual learning with deep learning methods for natural language text understanding |
topic | 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Deep learning (DE-588)1135597375 gnd |
topic_facet | Maschinelles Lernen Deep learning Hochschulschrift |
url | https://doi.org/10.5282/edoc.34444 https://nbn-resolving.org/urn:nbn:de:bvb:19-343238 |
work_keys_str_mv | AT chaudharyyatin federatedandcontinuallearningwithdeeplearningmethodsfornaturallanguagetextunderstanding |