The Classification of the Finite Simple Groups, Number 10: Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A
This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2023]
|
Schriftenreihe: | Mathematical Surveys and Monographs
Volume 40 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bicharacteristic type begun in the ninth volume of the series (see SURV/40.9). This is a fascinating set of simple groups which have properties in common with matrix groups (or, more generally, groups of Lie type) defined both over fields of characteristic 2 and over fields of characteristic 3. This set includes 11 of the celebrated 26 sporadic simple groups along with several of their large simple subgroups. Together with SURV/40.9, this volume provides the first unified treatment of this class of simple groups. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xiii, 587 Seiten) |
ISBN: | 9781470475666 9781470475536 |
DOI: | 10.1090/surv/040.10 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV050065559 | ||
003 | DE-604 | ||
005 | 20241213 | ||
007 | cr|uuu---uuuuu | ||
008 | 241203s2023 xx o|||| 00||| eng d | ||
020 | |a 9781470475666 |c Online |9 978-1-4704-7566-6 | ||
020 | |a 9781470475536 |c Print |9 978-1-4704-7553-6 | ||
024 | 7 | |a 10.1090/surv/040.10 |2 doi | |
035 | |a (OCoLC)1414114439 | ||
035 | |a (DE-599)HEB514058587 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a 20D08 |2 msc/2020 | ||
084 | |a 20D05 |2 msc/2020 | ||
084 | |a 20D06 |2 msc/2020 | ||
100 | 1 | |a Capdeboscq, Inna |0 (DE-588)1232358320 |4 aut | |
245 | 1 | 0 | |a The Classification of the Finite Simple Groups, Number 10 |b Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A |c Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xiii, 587 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical Surveys and Monographs |v Volume 40 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bicharacteristic type begun in the ninth volume of the series (see SURV/40.9). This is a fascinating set of simple groups which have properties in common with matrix groups (or, more generally, groups of Lie type) defined both over fields of characteristic 2 and over fields of characteristic 3. This set includes 11 of the celebrated 26 sporadic simple groups along with several of their large simple subgroups. Together with SURV/40.9, this volume provides the first unified treatment of this class of simple groups. | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Gorenstein, Daniel |d 1923-1992 |0 (DE-588)1077470711 |4 aut | |
700 | 1 | |a Lyons, Richard |d 1945- |0 (DE-588)172234360 |4 aut | |
700 | 1 | |a Solomon, Ronald |d 1948- |0 (DE-588)1011397684 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-7553-6 |
830 | 0 | |a Mathematical Surveys and Monographs |v Volume 40 |w (DE-604)BV042339669 |9 40 | |
856 | 4 | 0 | |u https://doi.org/10.1090/surv/040.10 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035403066 |
Datensatz im Suchindex
_version_ | 1818330338910273536 |
---|---|
adam_text | |
any_adam_object | |
author | Capdeboscq, Inna Gorenstein, Daniel 1923-1992 Lyons, Richard 1945- Solomon, Ronald 1948- |
author_GND | (DE-588)1232358320 (DE-588)1077470711 (DE-588)172234360 (DE-588)1011397684 |
author_facet | Capdeboscq, Inna Gorenstein, Daniel 1923-1992 Lyons, Richard 1945- Solomon, Ronald 1948- |
author_role | aut aut aut aut |
author_sort | Capdeboscq, Inna |
author_variant | i c ic d g dg r l rl r s rs |
building | Verbundindex |
bvnumber | BV050065559 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1414114439 (DE-599)HEB514058587 |
doi_str_mv | 10.1090/surv/040.10 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV050065559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241213</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241203s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470475666</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4704-7566-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470475536</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4704-7553-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/surv/040.10</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414114439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB514058587</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20D08</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20D05</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20D06</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Capdeboscq, Inna</subfield><subfield code="0">(DE-588)1232358320</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Classification of the Finite Simple Groups, Number 10</subfield><subfield code="b">Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A</subfield><subfield code="c">Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 587 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical Surveys and Monographs</subfield><subfield code="v">Volume 40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bicharacteristic type begun in the ninth volume of the series (see SURV/40.9). This is a fascinating set of simple groups which have properties in common with matrix groups (or, more generally, groups of Lie type) defined both over fields of characteristic 2 and over fields of characteristic 3. This set includes 11 of the celebrated 26 sporadic simple groups along with several of their large simple subgroups. Together with SURV/40.9, this volume provides the first unified treatment of this class of simple groups.</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorenstein, Daniel</subfield><subfield code="d">1923-1992</subfield><subfield code="0">(DE-588)1077470711</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyons, Richard</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)172234360</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solomon, Ronald</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)1011397684</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-7553-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical Surveys and Monographs</subfield><subfield code="v">Volume 40</subfield><subfield code="w">(DE-604)BV042339669</subfield><subfield code="9">40</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/surv/040.10</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035403066</subfield></datafield></record></collection> |
id | DE-604.BV050065559 |
illustrated | Not Illustrated |
indexdate | 2024-12-13T13:02:22Z |
institution | BVB |
isbn | 9781470475666 9781470475536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035403066 |
oclc_num | 1414114439 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xiii, 587 Seiten) |
psigel | ZDB-30-PQE |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical Surveys and Monographs |
series2 | Mathematical Surveys and Monographs |
spelling | Capdeboscq, Inna (DE-588)1232358320 aut The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon Providence, Rhode Island American Mathematical Society [2023] © 2023 1 Online-Ressource (xiii, 587 Seiten) txt rdacontent c rdamedia cr rdacarrier Mathematical Surveys and Monographs Volume 40 Description based on publisher supplied metadata and other sources This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bicharacteristic type begun in the ninth volume of the series (see SURV/40.9). This is a fascinating set of simple groups which have properties in common with matrix groups (or, more generally, groups of Lie type) defined both over fields of characteristic 2 and over fields of characteristic 3. This set includes 11 of the celebrated 26 sporadic simple groups along with several of their large simple subgroups. Together with SURV/40.9, this volume provides the first unified treatment of this class of simple groups. Electronic books Gorenstein, Daniel 1923-1992 (DE-588)1077470711 aut Lyons, Richard 1945- (DE-588)172234360 aut Solomon, Ronald 1948- (DE-588)1011397684 aut Erscheint auch als Druck-Ausgabe 978-1-4704-7553-6 Mathematical Surveys and Monographs Volume 40 (DE-604)BV042339669 40 https://doi.org/10.1090/surv/040.10 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Capdeboscq, Inna Gorenstein, Daniel 1923-1992 Lyons, Richard 1945- Solomon, Ronald 1948- The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A Mathematical Surveys and Monographs |
title | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A |
title_auth | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A |
title_exact_search | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A |
title_full | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon |
title_fullStr | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon |
title_full_unstemmed | The Classification of the Finite Simple Groups, Number 10 Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A Inna Capdeboscq ; Daniel Gorenstein ; Richard Lyons ; Ronald Solomon |
title_short | The Classification of the Finite Simple Groups, Number 10 |
title_sort | the classification of the finite simple groups number 10 part v chapters 9 17 theorem c6 and theorem c 4 case a |
title_sub | Part V, Chapters 9-17: Theorem C6 and Theorem C+4, Case A |
url | https://doi.org/10.1090/surv/040.10 |
volume_link | (DE-604)BV042339669 |
work_keys_str_mv | AT capdeboscqinna theclassificationofthefinitesimplegroupsnumber10partvchapters917theoremc6andtheoremc4casea AT gorensteindaniel theclassificationofthefinitesimplegroupsnumber10partvchapters917theoremc6andtheoremc4casea AT lyonsrichard theclassificationofthefinitesimplegroupsnumber10partvchapters917theoremc6andtheoremc4casea AT solomonronald theclassificationofthefinitesimplegroupsnumber10partvchapters917theoremc6andtheoremc4casea |