Twisted Morse Complexes: Morse Homology and Cohomology with Local Coefficients
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature Switzerland
2024
Cham Springer |
Ausgabe: | 1st ed. 2024 |
Schriftenreihe: | Lecture Notes in Mathematics
2361 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-1050 DE-92 DE-898 DE-861 DE-863 DE-862 DE-523 DE-91 DE-19 DE-703 DE-20 DE-706 DE-824 DE-739 Volltext |
Beschreibung: | 1 Online-Ressource (VIII, 158 p. 58 illus) |
ISBN: | 9783031716164 |
ISSN: | 1617-9692 |
DOI: | 10.1007/978-3-031-71616-4 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV050061783 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241202s2024 xx o|||| 00||| eng d | ||
020 | |a 9783031716164 |c Online |9 978-3-031-71616-4 | ||
024 | 7 | |a 10.1007/978-3-031-71616-4 |2 doi | |
035 | |a (ZDB-2-SMA)9783031716164 | ||
035 | |a (ZDB-2-LNM)9783031716164 | ||
035 | |a (DE-599)BVBBV050061783 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-824 |a DE-703 |a DE-861 |a DE-739 |a DE-862 |a DE-523 |a DE-20 |a DE-92 |a DE-1050 |a DE-706 |a DE-91 |a DE-634 |a DE-898 |a DE-863 | ||
082 | 0 | |a 515.39 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Banyaga, Augustin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Twisted Morse Complexes |b Morse Homology and Cohomology with Local Coefficients |c by Augustin Banyaga, David Hurtubise, Peter Spaeth |
250 | |a 1st ed. 2024 | ||
264 | 1 | |a Cham |b Springer Nature Switzerland |c 2024 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (VIII, 158 p. 58 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Mathematics |v 2361 |x 1617-9692 | |
650 | 4 | |a Dynamical Systems | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Manifolds and Cell Complexes | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Global analysis (Mathematics) | |
700 | 1 | |a Hurtubise, David |4 aut | |
700 | 1 | |a Spaeth, Peter |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-71615-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-71617-1 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-031-71616-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2024 | |
940 | 1 | |q ZDB-2-LNM_2024 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035399341 | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-634 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-1050 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-92 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-898 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-861 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-863 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-862 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-523 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-91 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-19 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-703 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-20 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-706 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-824 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-71616-4 |l DE-739 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817387031798480896 |
---|---|
adam_text | |
any_adam_object | |
author | Banyaga, Augustin Hurtubise, David Spaeth, Peter |
author_facet | Banyaga, Augustin Hurtubise, David Spaeth, Peter |
author_role | aut aut aut |
author_sort | Banyaga, Augustin |
author_variant | a b ab d h dh p s ps |
building | Verbundindex |
bvnumber | BV050061783 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783031716164 (ZDB-2-LNM)9783031716164 (DE-599)BVBBV050061783 |
dewey-full | 515.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 |
dewey-search | 515.39 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-031-71616-4 |
edition | 1st ed. 2024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV050061783</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241202s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031716164</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-031-71616-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-71616-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783031716164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783031716164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050061783</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banyaga, Augustin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Twisted Morse Complexes</subfield><subfield code="b">Morse Homology and Cohomology with Local Coefficients</subfield><subfield code="c">by Augustin Banyaga, David Hurtubise, Peter Spaeth</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature Switzerland</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 158 p. 58 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2361</subfield><subfield code="x">1617-9692</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurtubise, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spaeth, Peter</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-71615-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-71617-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2024</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2024</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035399341</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-71616-4</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050061783 |
illustrated | Not Illustrated |
indexdate | 2024-12-03T04:08:55Z |
institution | BVB |
isbn | 9783031716164 |
issn | 1617-9692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035399341 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-824 DE-703 DE-861 DE-739 DE-862 DE-BY-FWS DE-523 DE-20 DE-92 DE-1050 DE-706 DE-91 DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-863 DE-BY-FWS |
owner_facet | DE-19 DE-BY-UBM DE-824 DE-703 DE-861 DE-739 DE-862 DE-BY-FWS DE-523 DE-20 DE-92 DE-1050 DE-706 DE-91 DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (VIII, 158 p. 58 illus) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2024 ZDB-2-LNM_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer Nature Switzerland Springer |
record_format | marc |
series2 | Lecture Notes in Mathematics |
spellingShingle | Banyaga, Augustin Hurtubise, David Spaeth, Peter Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients Dynamical Systems Algebraic Topology Manifolds and Cell Complexes Global Analysis and Analysis on Manifolds Dynamical systems Algebraic topology Manifolds (Mathematics) Global analysis (Mathematics) |
title | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients |
title_auth | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients |
title_exact_search | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients |
title_full | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients by Augustin Banyaga, David Hurtubise, Peter Spaeth |
title_fullStr | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients by Augustin Banyaga, David Hurtubise, Peter Spaeth |
title_full_unstemmed | Twisted Morse Complexes Morse Homology and Cohomology with Local Coefficients by Augustin Banyaga, David Hurtubise, Peter Spaeth |
title_short | Twisted Morse Complexes |
title_sort | twisted morse complexes morse homology and cohomology with local coefficients |
title_sub | Morse Homology and Cohomology with Local Coefficients |
topic | Dynamical Systems Algebraic Topology Manifolds and Cell Complexes Global Analysis and Analysis on Manifolds Dynamical systems Algebraic topology Manifolds (Mathematics) Global analysis (Mathematics) |
topic_facet | Dynamical Systems Algebraic Topology Manifolds and Cell Complexes Global Analysis and Analysis on Manifolds Dynamical systems Algebraic topology Manifolds (Mathematics) Global analysis (Mathematics) |
url | https://doi.org/10.1007/978-3-031-71616-4 |
work_keys_str_mv | AT banyagaaugustin twistedmorsecomplexesmorsehomologyandcohomologywithlocalcoefficients AT hurtubisedavid twistedmorsecomplexesmorsehomologyandcohomologywithlocalcoefficients AT spaethpeter twistedmorsecomplexesmorsehomologyandcohomologywithlocalcoefficients |