Topics in spectral geometry:
It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2023]
|
Schriftenreihe: | Graduate studies in mathematics
Volume 237 |
Schlagworte: |
Global analysis, analysis on manifolds
> Calculus on manifolds; nonlinear operators
> Spectral theory; eigenvalue problems
Global analysis, analysis on manifolds
> Partial differential equations on manifolds; differential operators
> Spectral problems; spectral geometry; scattering theory
|
Online-Zugang: | Volltext |
Zusammenfassung: | It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladnis experiments with vibrating plates, Lord Rayleighs theory of sound, and Mark Kacs celebrated question "Can one hear the shape of a drum?" In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites. |
Beschreibung: | Literaturverzeichnis: Seite 297-320 und Index |
Beschreibung: | 1 Online-Ressource (xviii, 325 Seiten) Illustrationen, Diagramme |
ISBN: | 9781470475499 9781470475253 |
DOI: | 10.1090/gsm/237 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV050061378 | ||
003 | DE-604 | ||
005 | 20241213 | ||
007 | cr|uuu---uuuuu | ||
008 | 241129s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781470475499 |c Online |9 978-1-4704-7549-9 | ||
020 | |a 9781470475253 |c Print |9 978-1-4704-7525-3 | ||
024 | 7 | |a 10.1090/gsm/237 |2 doi | |
035 | |a (OCoLC)1477610645 | ||
035 | |a (DE-599)BVBBV050061378 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a 35Pxx |2 msc/2020 | ||
084 | |a 91-01 |2 msc/2020 | ||
100 | 1 | |a Levitin, Michael |d 1963- |0 (DE-588)143226142 |4 aut | |
245 | 1 | 0 | |a Topics in spectral geometry |c Michael Levitin ; Dan Mangoubi ; Iosif Polterovich |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xviii, 325 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate studies in mathematics |v Volume 237 | |
500 | |a Literaturverzeichnis: Seite 297-320 und Index | ||
520 | |a It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladnis experiments with vibrating plates, Lord Rayleighs theory of sound, and Mark Kacs celebrated question "Can one hear the shape of a drum?" In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites. | ||
650 | 7 | |a Spectral geometry |2 DLC | |
650 | 7 | |a Eigenfunctions |2 DLC | |
653 | 0 | |a Operator theory -- General theory of linear operators -- Eigenvalue problems | |
653 | 0 | |a Global analysis, analysis on manifolds -- Calculus on manifolds; nonlinear operators -- Spectral theory; eigenvalue problems | |
653 | 0 | |a Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Spectral problems; spectral geometry; scattering theory | |
653 | 0 | |a Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Isospectrality | |
653 | 0 | |a Numerical analysis -- Partial differential equations, boundary value problems -- Eigenvalue problems | |
700 | 1 | |a Mangoubi, Dan |d 1974- |0 (DE-588)1318190975 |4 aut | |
700 | 1 | |a Polterovich, Iosif |d 1974- |0 (DE-588)1156758416 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-7525-3 |
830 | 0 | |a Graduate studies in mathematics |v Volume 237 |w (DE-604)BV044714883 |9 237 | |
856 | 4 | 0 | |u https://doi.org/10.1090/gsm/237 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035398942 |
Datensatz im Suchindex
_version_ | 1822490664322990080 |
---|---|
adam_text | |
any_adam_object | |
author | Levitin, Michael 1963- Mangoubi, Dan 1974- Polterovich, Iosif 1974- |
author_GND | (DE-588)143226142 (DE-588)1318190975 (DE-588)1156758416 |
author_facet | Levitin, Michael 1963- Mangoubi, Dan 1974- Polterovich, Iosif 1974- |
author_role | aut aut aut |
author_sort | Levitin, Michael 1963- |
author_variant | m l ml d m dm i p ip |
building | Verbundindex |
bvnumber | BV050061378 |
ctrlnum | (OCoLC)1477610645 (DE-599)BVBBV050061378 |
doi_str_mv | 10.1090/gsm/237 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV050061378</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241213</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241129s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470475499</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4704-7549-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470475253</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4704-7525-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/gsm/237</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1477610645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050061378</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Pxx</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">91-01</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levitin, Michael</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)143226142</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in spectral geometry</subfield><subfield code="c">Michael Levitin ; Dan Mangoubi ; Iosif Polterovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 325 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">Volume 237</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 297-320 und Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladnis experiments with vibrating plates, Lord Rayleighs theory of sound, and Mark Kacs celebrated question "Can one hear the shape of a drum?" In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral geometry</subfield><subfield code="2">DLC</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenfunctions</subfield><subfield code="2">DLC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Operator theory -- General theory of linear operators -- Eigenvalue problems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global analysis, analysis on manifolds -- Calculus on manifolds; nonlinear operators -- Spectral theory; eigenvalue problems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Spectral problems; spectral geometry; scattering theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Isospectrality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerical analysis -- Partial differential equations, boundary value problems -- Eigenvalue problems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangoubi, Dan</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)1318190975</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polterovich, Iosif</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)1156758416</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-7525-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">Volume 237</subfield><subfield code="w">(DE-604)BV044714883</subfield><subfield code="9">237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/gsm/237</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035398942</subfield></datafield></record></collection> |
id | DE-604.BV050061378 |
illustrated | Illustrated |
indexdate | 2025-01-28T11:08:58Z |
institution | BVB |
isbn | 9781470475499 9781470475253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035398942 |
oclc_num | 1477610645 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xviii, 325 Seiten) Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | American Mathematical Society |
record_format | marc |
series | Graduate studies in mathematics |
series2 | Graduate studies in mathematics |
spelling | Levitin, Michael 1963- (DE-588)143226142 aut Topics in spectral geometry Michael Levitin ; Dan Mangoubi ; Iosif Polterovich Providence, Rhode Island American Mathematical Society [2023] © 2023 1 Online-Ressource (xviii, 325 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Graduate studies in mathematics Volume 237 Literaturverzeichnis: Seite 297-320 und Index It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladnis experiments with vibrating plates, Lord Rayleighs theory of sound, and Mark Kacs celebrated question "Can one hear the shape of a drum?" In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites. Spectral geometry DLC Eigenfunctions DLC Operator theory -- General theory of linear operators -- Eigenvalue problems Global analysis, analysis on manifolds -- Calculus on manifolds; nonlinear operators -- Spectral theory; eigenvalue problems Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Spectral problems; spectral geometry; scattering theory Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Isospectrality Numerical analysis -- Partial differential equations, boundary value problems -- Eigenvalue problems Mangoubi, Dan 1974- (DE-588)1318190975 aut Polterovich, Iosif 1974- (DE-588)1156758416 aut Erscheint auch als Druck-Ausgabe 978-1-4704-7525-3 Graduate studies in mathematics Volume 237 (DE-604)BV044714883 237 https://doi.org/10.1090/gsm/237 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Levitin, Michael 1963- Mangoubi, Dan 1974- Polterovich, Iosif 1974- Topics in spectral geometry Graduate studies in mathematics Spectral geometry DLC Eigenfunctions DLC |
title | Topics in spectral geometry |
title_auth | Topics in spectral geometry |
title_exact_search | Topics in spectral geometry |
title_full | Topics in spectral geometry Michael Levitin ; Dan Mangoubi ; Iosif Polterovich |
title_fullStr | Topics in spectral geometry Michael Levitin ; Dan Mangoubi ; Iosif Polterovich |
title_full_unstemmed | Topics in spectral geometry Michael Levitin ; Dan Mangoubi ; Iosif Polterovich |
title_short | Topics in spectral geometry |
title_sort | topics in spectral geometry |
topic | Spectral geometry DLC Eigenfunctions DLC |
topic_facet | Spectral geometry Eigenfunctions |
url | https://doi.org/10.1090/gsm/237 |
volume_link | (DE-604)BV044714883 |
work_keys_str_mv | AT levitinmichael topicsinspectralgeometry AT mangoubidan topicsinspectralgeometry AT polterovichiosif topicsinspectralgeometry |