Mastering PyTorch: create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK
Packt
January 2024
|
Ausgabe: | Second edition |
Online-Zugang: | DE-91 DE-706 Volltext |
Beschreibung: | 1 Online-Ressource (xxi, 534 Seiten) Illustrationen, Diagramme |
ISBN: | 9781801079969 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049957135 | ||
003 | DE-604 | ||
005 | 20241209 | ||
007 | cr|uuu---uuuuu | ||
008 | 241119s2024 xx a||| o|||| 00||| eng d | ||
020 | |a 9781801079969 |9 9781801079969 | ||
035 | |a (ZDB-221-PDB)9781801079969 | ||
035 | |a (DE-599)BVBBV049957135 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-91 | ||
100 | 1 | |a Jha, Ashish Ranjan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mastering PyTorch |b create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |c Ashish Ranjan Jha |
250 | |a Second edition | ||
264 | 1 | |a Birmingham, UK |b Packt |c January 2024 | |
300 | |a 1 Online-Ressource (xxi, 534 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781801074308 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0007200.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-221-PDB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035295042 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007200.html |l DE-91 |p ZDB-221-PDB |q TUM_Paketkauf_2025 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007200.html |l DE-706 |p ZDB-221-PDB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817975488682917888 |
---|---|
adam_text | |
any_adam_object | |
author | Jha, Ashish Ranjan |
author_facet | Jha, Ashish Ranjan |
author_role | aut |
author_sort | Jha, Ashish Ranjan |
author_variant | a r j ar arj |
building | Verbundindex |
bvnumber | BV049957135 |
collection | ZDB-221-PDB |
ctrlnum | (ZDB-221-PDB)9781801079969 (DE-599)BVBBV049957135 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049957135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241209</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241119s2024 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801079969</subfield><subfield code="9">9781801079969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDB)9781801079969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049957135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jha, Ashish Ranjan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering PyTorch</subfield><subfield code="b">create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond</subfield><subfield code="c">Ashish Ranjan Jha</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt</subfield><subfield code="c">January 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 534 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781801074308</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007200.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035295042</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007200.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PDB</subfield><subfield code="q">TUM_Paketkauf_2025</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007200.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049957135 |
illustrated | Illustrated |
indexdate | 2024-12-09T15:02:11Z |
institution | BVB |
isbn | 9781801079969 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035295042 |
open_access_boolean | |
owner | DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-706 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxi, 534 Seiten) Illustrationen, Diagramme |
psigel | ZDB-221-PDB ZDB-221-PDB TUM_Paketkauf_2025 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt |
record_format | marc |
spelling | Jha, Ashish Ranjan Verfasser aut Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond Ashish Ranjan Jha Second edition Birmingham, UK Packt January 2024 1 Online-Ressource (xxi, 534 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Erscheint auch als Druck-Ausgabe 9781801074308 https://portal.igpublish.com/iglibrary/search/PACKT0007200.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Jha, Ashish Ranjan Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |
title | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |
title_auth | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |
title_exact_search | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |
title_full | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond Ashish Ranjan Jha |
title_fullStr | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond Ashish Ranjan Jha |
title_full_unstemmed | Mastering PyTorch create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond Ashish Ranjan Jha |
title_short | Mastering PyTorch |
title_sort | mastering pytorch create and deploy deep learning models from cnns to multimodal models llms and beyond |
title_sub | create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond |
url | https://portal.igpublish.com/iglibrary/search/PACKT0007200.html |
work_keys_str_mv | AT jhaashishranjan masteringpytorchcreateanddeploydeeplearningmodelsfromcnnstomultimodalmodelsllmsandbeyond |