Mathematical modeling and simulation: introduction for scientists and engineers
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2024]
|
Ausgabe: | Second edition |
Schlagworte: | |
Beschreibung: | xvi, 480 Seiten Illustrationen, Diagramme |
ISBN: | 9783527414147 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049921569 | ||
003 | DE-604 | ||
005 | 20241203 | ||
007 | t| | ||
008 | 241023s2024 xx a||| |||| 00||| eng d | ||
020 | |a 9783527414147 |c DruckAusgabe, Softcover |9 978-3-527-41414-7 | ||
035 | |a (OCoLC)1421941066 | ||
035 | |a (DE-599)BVBBV049921569 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-858 |a DE-M347 |a DE-703 |a DE-83 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a SK 970 |0 (DE-625)143276: |2 rvk | ||
084 | |a ST 340 |0 (DE-625)143665: |2 rvk | ||
100 | 1 | |a Velten, Kai |e Verfasser |0 (DE-588)137007159 |4 aut | |
245 | 1 | 0 | |a Mathematical modeling and simulation |b introduction for scientists and engineers |c Kai Velten, Dominik M. Schmidt, Katrin Kahlen |
250 | |a Second edition | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a xvi, 480 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Principles of Mathematical Modeling -- 1.1 A Complex World Needs Models -- 1.2 Systems, Models, Simulations -- 1.2.1 Teleological Nature of Modeling and Simulation -- 1.2.2 Modeling and Simulation Scheme -- 1.2.3 Simulation -- 1.2.4 System -- 1.2.5 Conceptual and Physical Models -- 1.3 Mathematics as a Natural Modeling Language -- 1.3.1 Input-Output Systems -- 1.3.2 General Form of Experimental Data -- 1.3.3 Distinguished Role of Numerical Data -- 1.4 Definition of Mathematical Models | |
505 | 8 | |a 1.5 Examples and Some More Definitions -- 1.5.1 State Variables and System Parameters -- 1.5.2 Using Computer Algebra Software -- 1.5.3 The Problem-Solving Scheme -- 1.5.4 Strategies to Set Up Simple Models -- 1.5.4.1 Mixture Problem -- 1.5.4.2 Tank Labeling Problem -- 1.5.4.3 Financial Mathematics -- 1.5.5 Linear Programming -- 1.5.6 Modeling a Black Box System -- 1.6 Even More Definitions -- 1.6.1 Phenomenological and Mechanistic Models -- 1.6.2 Stationary and Instationary Models -- 1.6.3 Distributed and Lumped Models -- 1.7 Classification of Mathematical Models | |
505 | 8 | |a 1.7.1 From Black to White Box Models -- 1.7.2 SQM Space Classification: S Axis -- 1.7.3 SQM Space Classification: Q Axis -- 1.7.4 SQM Space Classification: M Axis -- 1.8 Everything Looks Like a Nail? -- Chapter 2 Phenomenological Models -- 2.1 Elementary Statistics -- 2.1.1 Descriptive Statistics -- 2.1.1.1 Using Calc or Excel -- 2.1.1.2 Using R in RStudio -- 2.1.1.3 Roadmap for a First Analysis -- 2.1.2 Random Processes and Probability -- 2.1.2.1 Random Variables -- 2.1.2.2 Probability -- 2.1.2.3 Densities and Distributions -- 2.1.2.4 The Uniform Distribution -- 2.1.2.5 The Normal Distribution | |
505 | 8 | |a 2.1.2.6 Expected Value and Standard Deviation -- 2.1.2.7 More on Distributions -- 2.1.2.8 Quantiles and Confidence Intervals -- 2.1.3 Inferential Statistics -- 2.1.3.1 Is Crop A's Yield Really Higher? -- 2.1.3.2 Structure of a Hypothesis Test -- 2.1.3.3 The t-test -- 2.1.3.4 Testing Normality -- 2.1.3.5 Type I/II Errors, Power, and Effect Size -- 2.1.3.6 Testing Regression Parameters -- 2.1.3.7 Analysis of Variance -- 2.2 Linear Regression -- 2.2.1 The Linear Regression Problem -- 2.2.2 Solution Using Software -- 2.2.3 The Coefficient of Determination | |
505 | 8 | |a 2.2.4 Interpretation of the Regression Coefficients -- 2.2.5 Checking Assumptions -- 2.2.6 Nonlinear Linear Regression -- 2.3 Multiple Linear Regression -- 2.3.1 The Multiple Linear Regression Problem -- 2.3.2 Solution Using Software -- 2.3.3 Cross-Validation -- 2.4 Nonlinear Regression -- 2.4.1 The Nonlinear Regression Problem -- 2.4.2 Solution Using Software -- 2.4.3 Multiple Nonlinear Regression -- 2.4.4 Implicit and Vector-Valued Problems -- 2.5 Smoothing Splines -- 2.6 Neural Networks -- 2.6.1 General Idea -- 2.6.2 Feed-Forward Neural Networks -- 2.6.3 Solution Using Software | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schmidt, Dominik M. |e Verfasser |0 (DE-588)1339391708 |4 aut | |
700 | 1 | |a Kahlen, Katrin |d 1968- |e Verfasser |0 (DE-588)122130472 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83940-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-84960-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83939-1 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035260135 |
Datensatz im Suchindex
_version_ | 1817704225573961728 |
---|---|
adam_text | |
any_adam_object | |
author | Velten, Kai Schmidt, Dominik M. Kahlen, Katrin 1968- |
author_GND | (DE-588)137007159 (DE-588)1339391708 (DE-588)122130472 |
author_facet | Velten, Kai Schmidt, Dominik M. Kahlen, Katrin 1968- |
author_role | aut aut aut |
author_sort | Velten, Kai |
author_variant | k v kv d m s dm dms k k kk |
building | Verbundindex |
bvnumber | BV049921569 |
classification_rvk | SK 950 SK 130 SK 840 SK 970 ST 340 |
contents | Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Principles of Mathematical Modeling -- 1.1 A Complex World Needs Models -- 1.2 Systems, Models, Simulations -- 1.2.1 Teleological Nature of Modeling and Simulation -- 1.2.2 Modeling and Simulation Scheme -- 1.2.3 Simulation -- 1.2.4 System -- 1.2.5 Conceptual and Physical Models -- 1.3 Mathematics as a Natural Modeling Language -- 1.3.1 Input-Output Systems -- 1.3.2 General Form of Experimental Data -- 1.3.3 Distinguished Role of Numerical Data -- 1.4 Definition of Mathematical Models 1.5 Examples and Some More Definitions -- 1.5.1 State Variables and System Parameters -- 1.5.2 Using Computer Algebra Software -- 1.5.3 The Problem-Solving Scheme -- 1.5.4 Strategies to Set Up Simple Models -- 1.5.4.1 Mixture Problem -- 1.5.4.2 Tank Labeling Problem -- 1.5.4.3 Financial Mathematics -- 1.5.5 Linear Programming -- 1.5.6 Modeling a Black Box System -- 1.6 Even More Definitions -- 1.6.1 Phenomenological and Mechanistic Models -- 1.6.2 Stationary and Instationary Models -- 1.6.3 Distributed and Lumped Models -- 1.7 Classification of Mathematical Models 1.7.1 From Black to White Box Models -- 1.7.2 SQM Space Classification: S Axis -- 1.7.3 SQM Space Classification: Q Axis -- 1.7.4 SQM Space Classification: M Axis -- 1.8 Everything Looks Like a Nail? -- Chapter 2 Phenomenological Models -- 2.1 Elementary Statistics -- 2.1.1 Descriptive Statistics -- 2.1.1.1 Using Calc or Excel -- 2.1.1.2 Using R in RStudio -- 2.1.1.3 Roadmap for a First Analysis -- 2.1.2 Random Processes and Probability -- 2.1.2.1 Random Variables -- 2.1.2.2 Probability -- 2.1.2.3 Densities and Distributions -- 2.1.2.4 The Uniform Distribution -- 2.1.2.5 The Normal Distribution 2.1.2.6 Expected Value and Standard Deviation -- 2.1.2.7 More on Distributions -- 2.1.2.8 Quantiles and Confidence Intervals -- 2.1.3 Inferential Statistics -- 2.1.3.1 Is Crop A's Yield Really Higher? -- 2.1.3.2 Structure of a Hypothesis Test -- 2.1.3.3 The t-test -- 2.1.3.4 Testing Normality -- 2.1.3.5 Type I/II Errors, Power, and Effect Size -- 2.1.3.6 Testing Regression Parameters -- 2.1.3.7 Analysis of Variance -- 2.2 Linear Regression -- 2.2.1 The Linear Regression Problem -- 2.2.2 Solution Using Software -- 2.2.3 The Coefficient of Determination 2.2.4 Interpretation of the Regression Coefficients -- 2.2.5 Checking Assumptions -- 2.2.6 Nonlinear Linear Regression -- 2.3 Multiple Linear Regression -- 2.3.1 The Multiple Linear Regression Problem -- 2.3.2 Solution Using Software -- 2.3.3 Cross-Validation -- 2.4 Nonlinear Regression -- 2.4.1 The Nonlinear Regression Problem -- 2.4.2 Solution Using Software -- 2.4.3 Multiple Nonlinear Regression -- 2.4.4 Implicit and Vector-Valued Problems -- 2.5 Smoothing Splines -- 2.6 Neural Networks -- 2.6.1 General Idea -- 2.6.2 Feed-Forward Neural Networks -- 2.6.3 Solution Using Software |
ctrlnum | (OCoLC)1421941066 (DE-599)BVBBV049921569 |
discipline | Informatik Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049921569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241203</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241023s2024 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527414147</subfield><subfield code="c">DruckAusgabe, Softcover</subfield><subfield code="9">978-3-527-41414-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1421941066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049921569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-858</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 970</subfield><subfield code="0">(DE-625)143276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 340</subfield><subfield code="0">(DE-625)143665:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Velten, Kai</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137007159</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling and simulation</subfield><subfield code="b">introduction for scientists and engineers</subfield><subfield code="c">Kai Velten, Dominik M. Schmidt, Katrin Kahlen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 480 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Principles of Mathematical Modeling -- 1.1 A Complex World Needs Models -- 1.2 Systems, Models, Simulations -- 1.2.1 Teleological Nature of Modeling and Simulation -- 1.2.2 Modeling and Simulation Scheme -- 1.2.3 Simulation -- 1.2.4 System -- 1.2.5 Conceptual and Physical Models -- 1.3 Mathematics as a Natural Modeling Language -- 1.3.1 Input-Output Systems -- 1.3.2 General Form of Experimental Data -- 1.3.3 Distinguished Role of Numerical Data -- 1.4 Definition of Mathematical Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.5 Examples and Some More Definitions -- 1.5.1 State Variables and System Parameters -- 1.5.2 Using Computer Algebra Software -- 1.5.3 The Problem-Solving Scheme -- 1.5.4 Strategies to Set Up Simple Models -- 1.5.4.1 Mixture Problem -- 1.5.4.2 Tank Labeling Problem -- 1.5.4.3 Financial Mathematics -- 1.5.5 Linear Programming -- 1.5.6 Modeling a Black Box System -- 1.6 Even More Definitions -- 1.6.1 Phenomenological and Mechanistic Models -- 1.6.2 Stationary and Instationary Models -- 1.6.3 Distributed and Lumped Models -- 1.7 Classification of Mathematical Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7.1 From Black to White Box Models -- 1.7.2 SQM Space Classification: S Axis -- 1.7.3 SQM Space Classification: Q Axis -- 1.7.4 SQM Space Classification: M Axis -- 1.8 Everything Looks Like a Nail? -- Chapter 2 Phenomenological Models -- 2.1 Elementary Statistics -- 2.1.1 Descriptive Statistics -- 2.1.1.1 Using Calc or Excel -- 2.1.1.2 Using R in RStudio -- 2.1.1.3 Roadmap for a First Analysis -- 2.1.2 Random Processes and Probability -- 2.1.2.1 Random Variables -- 2.1.2.2 Probability -- 2.1.2.3 Densities and Distributions -- 2.1.2.4 The Uniform Distribution -- 2.1.2.5 The Normal Distribution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.2.6 Expected Value and Standard Deviation -- 2.1.2.7 More on Distributions -- 2.1.2.8 Quantiles and Confidence Intervals -- 2.1.3 Inferential Statistics -- 2.1.3.1 Is Crop A's Yield Really Higher? -- 2.1.3.2 Structure of a Hypothesis Test -- 2.1.3.3 The t-test -- 2.1.3.4 Testing Normality -- 2.1.3.5 Type I/II Errors, Power, and Effect Size -- 2.1.3.6 Testing Regression Parameters -- 2.1.3.7 Analysis of Variance -- 2.2 Linear Regression -- 2.2.1 The Linear Regression Problem -- 2.2.2 Solution Using Software -- 2.2.3 The Coefficient of Determination</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.4 Interpretation of the Regression Coefficients -- 2.2.5 Checking Assumptions -- 2.2.6 Nonlinear Linear Regression -- 2.3 Multiple Linear Regression -- 2.3.1 The Multiple Linear Regression Problem -- 2.3.2 Solution Using Software -- 2.3.3 Cross-Validation -- 2.4 Nonlinear Regression -- 2.4.1 The Nonlinear Regression Problem -- 2.4.2 Solution Using Software -- 2.4.3 Multiple Nonlinear Regression -- 2.4.4 Implicit and Vector-Valued Problems -- 2.5 Smoothing Splines -- 2.6 Neural Networks -- 2.6.1 General Idea -- 2.6.2 Feed-Forward Neural Networks -- 2.6.3 Solution Using Software</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Dominik M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1339391708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kahlen, Katrin</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122130472</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83940-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-84960-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83939-1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035260135</subfield></datafield></record></collection> |
id | DE-604.BV049921569 |
illustrated | Illustrated |
indexdate | 2024-12-06T15:10:34Z |
institution | BVB |
isbn | 9783527414147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035260135 |
oclc_num | 1421941066 |
open_access_boolean | |
owner | DE-858 DE-M347 DE-703 DE-83 |
owner_facet | DE-858 DE-M347 DE-703 DE-83 |
physical | xvi, 480 Seiten Illustrationen, Diagramme |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Velten, Kai Verfasser (DE-588)137007159 aut Mathematical modeling and simulation introduction for scientists and engineers Kai Velten, Dominik M. Schmidt, Katrin Kahlen Second edition Weinheim Wiley-VCH [2024] © 2024 xvi, 480 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Principles of Mathematical Modeling -- 1.1 A Complex World Needs Models -- 1.2 Systems, Models, Simulations -- 1.2.1 Teleological Nature of Modeling and Simulation -- 1.2.2 Modeling and Simulation Scheme -- 1.2.3 Simulation -- 1.2.4 System -- 1.2.5 Conceptual and Physical Models -- 1.3 Mathematics as a Natural Modeling Language -- 1.3.1 Input-Output Systems -- 1.3.2 General Form of Experimental Data -- 1.3.3 Distinguished Role of Numerical Data -- 1.4 Definition of Mathematical Models 1.5 Examples and Some More Definitions -- 1.5.1 State Variables and System Parameters -- 1.5.2 Using Computer Algebra Software -- 1.5.3 The Problem-Solving Scheme -- 1.5.4 Strategies to Set Up Simple Models -- 1.5.4.1 Mixture Problem -- 1.5.4.2 Tank Labeling Problem -- 1.5.4.3 Financial Mathematics -- 1.5.5 Linear Programming -- 1.5.6 Modeling a Black Box System -- 1.6 Even More Definitions -- 1.6.1 Phenomenological and Mechanistic Models -- 1.6.2 Stationary and Instationary Models -- 1.6.3 Distributed and Lumped Models -- 1.7 Classification of Mathematical Models 1.7.1 From Black to White Box Models -- 1.7.2 SQM Space Classification: S Axis -- 1.7.3 SQM Space Classification: Q Axis -- 1.7.4 SQM Space Classification: M Axis -- 1.8 Everything Looks Like a Nail? -- Chapter 2 Phenomenological Models -- 2.1 Elementary Statistics -- 2.1.1 Descriptive Statistics -- 2.1.1.1 Using Calc or Excel -- 2.1.1.2 Using R in RStudio -- 2.1.1.3 Roadmap for a First Analysis -- 2.1.2 Random Processes and Probability -- 2.1.2.1 Random Variables -- 2.1.2.2 Probability -- 2.1.2.3 Densities and Distributions -- 2.1.2.4 The Uniform Distribution -- 2.1.2.5 The Normal Distribution 2.1.2.6 Expected Value and Standard Deviation -- 2.1.2.7 More on Distributions -- 2.1.2.8 Quantiles and Confidence Intervals -- 2.1.3 Inferential Statistics -- 2.1.3.1 Is Crop A's Yield Really Higher? -- 2.1.3.2 Structure of a Hypothesis Test -- 2.1.3.3 The t-test -- 2.1.3.4 Testing Normality -- 2.1.3.5 Type I/II Errors, Power, and Effect Size -- 2.1.3.6 Testing Regression Parameters -- 2.1.3.7 Analysis of Variance -- 2.2 Linear Regression -- 2.2.1 The Linear Regression Problem -- 2.2.2 Solution Using Software -- 2.2.3 The Coefficient of Determination 2.2.4 Interpretation of the Regression Coefficients -- 2.2.5 Checking Assumptions -- 2.2.6 Nonlinear Linear Regression -- 2.3 Multiple Linear Regression -- 2.3.1 The Multiple Linear Regression Problem -- 2.3.2 Solution Using Software -- 2.3.3 Cross-Validation -- 2.4 Nonlinear Regression -- 2.4.1 The Nonlinear Regression Problem -- 2.4.2 Solution Using Software -- 2.4.3 Multiple Nonlinear Regression -- 2.4.4 Implicit and Vector-Valued Problems -- 2.5 Smoothing Splines -- 2.6 Neural Networks -- 2.6.1 General Idea -- 2.6.2 Feed-Forward Neural Networks -- 2.6.3 Solution Using Software Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 s DE-604 Schmidt, Dominik M. Verfasser (DE-588)1339391708 aut Kahlen, Katrin 1968- Verfasser (DE-588)122130472 aut Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83940-7 Erscheint auch als Online-Ausgabe 978-3-527-84960-4 Erscheint auch als Online-Ausgabe, PDF 978-3-527-83939-1 |
spellingShingle | Velten, Kai Schmidt, Dominik M. Kahlen, Katrin 1968- Mathematical modeling and simulation introduction for scientists and engineers Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Principles of Mathematical Modeling -- 1.1 A Complex World Needs Models -- 1.2 Systems, Models, Simulations -- 1.2.1 Teleological Nature of Modeling and Simulation -- 1.2.2 Modeling and Simulation Scheme -- 1.2.3 Simulation -- 1.2.4 System -- 1.2.5 Conceptual and Physical Models -- 1.3 Mathematics as a Natural Modeling Language -- 1.3.1 Input-Output Systems -- 1.3.2 General Form of Experimental Data -- 1.3.3 Distinguished Role of Numerical Data -- 1.4 Definition of Mathematical Models 1.5 Examples and Some More Definitions -- 1.5.1 State Variables and System Parameters -- 1.5.2 Using Computer Algebra Software -- 1.5.3 The Problem-Solving Scheme -- 1.5.4 Strategies to Set Up Simple Models -- 1.5.4.1 Mixture Problem -- 1.5.4.2 Tank Labeling Problem -- 1.5.4.3 Financial Mathematics -- 1.5.5 Linear Programming -- 1.5.6 Modeling a Black Box System -- 1.6 Even More Definitions -- 1.6.1 Phenomenological and Mechanistic Models -- 1.6.2 Stationary and Instationary Models -- 1.6.3 Distributed and Lumped Models -- 1.7 Classification of Mathematical Models 1.7.1 From Black to White Box Models -- 1.7.2 SQM Space Classification: S Axis -- 1.7.3 SQM Space Classification: Q Axis -- 1.7.4 SQM Space Classification: M Axis -- 1.8 Everything Looks Like a Nail? -- Chapter 2 Phenomenological Models -- 2.1 Elementary Statistics -- 2.1.1 Descriptive Statistics -- 2.1.1.1 Using Calc or Excel -- 2.1.1.2 Using R in RStudio -- 2.1.1.3 Roadmap for a First Analysis -- 2.1.2 Random Processes and Probability -- 2.1.2.1 Random Variables -- 2.1.2.2 Probability -- 2.1.2.3 Densities and Distributions -- 2.1.2.4 The Uniform Distribution -- 2.1.2.5 The Normal Distribution 2.1.2.6 Expected Value and Standard Deviation -- 2.1.2.7 More on Distributions -- 2.1.2.8 Quantiles and Confidence Intervals -- 2.1.3 Inferential Statistics -- 2.1.3.1 Is Crop A's Yield Really Higher? -- 2.1.3.2 Structure of a Hypothesis Test -- 2.1.3.3 The t-test -- 2.1.3.4 Testing Normality -- 2.1.3.5 Type I/II Errors, Power, and Effect Size -- 2.1.3.6 Testing Regression Parameters -- 2.1.3.7 Analysis of Variance -- 2.2 Linear Regression -- 2.2.1 The Linear Regression Problem -- 2.2.2 Solution Using Software -- 2.2.3 The Coefficient of Determination 2.2.4 Interpretation of the Regression Coefficients -- 2.2.5 Checking Assumptions -- 2.2.6 Nonlinear Linear Regression -- 2.3 Multiple Linear Regression -- 2.3.1 The Multiple Linear Regression Problem -- 2.3.2 Solution Using Software -- 2.3.3 Cross-Validation -- 2.4 Nonlinear Regression -- 2.4.1 The Nonlinear Regression Problem -- 2.4.2 Solution Using Software -- 2.4.3 Multiple Nonlinear Regression -- 2.4.4 Implicit and Vector-Valued Problems -- 2.5 Smoothing Splines -- 2.6 Neural Networks -- 2.6.1 General Idea -- 2.6.2 Feed-Forward Neural Networks -- 2.6.3 Solution Using Software Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4114528-8 |
title | Mathematical modeling and simulation introduction for scientists and engineers |
title_auth | Mathematical modeling and simulation introduction for scientists and engineers |
title_exact_search | Mathematical modeling and simulation introduction for scientists and engineers |
title_full | Mathematical modeling and simulation introduction for scientists and engineers Kai Velten, Dominik M. Schmidt, Katrin Kahlen |
title_fullStr | Mathematical modeling and simulation introduction for scientists and engineers Kai Velten, Dominik M. Schmidt, Katrin Kahlen |
title_full_unstemmed | Mathematical modeling and simulation introduction for scientists and engineers Kai Velten, Dominik M. Schmidt, Katrin Kahlen |
title_short | Mathematical modeling and simulation |
title_sort | mathematical modeling and simulation introduction for scientists and engineers |
title_sub | introduction for scientists and engineers |
topic | Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Mathematisches Modell |
work_keys_str_mv | AT veltenkai mathematicalmodelingandsimulationintroductionforscientistsandengineers AT schmidtdominikm mathematicalmodelingandsimulationintroductionforscientistsandengineers AT kahlenkatrin mathematicalmodelingandsimulationintroductionforscientistsandengineers |