Autoregressive generative neural networks for the inverse design of 3d molecular structures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
2024
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Beschreibung: | 1 Online-Ressource (x, 122 Seiten) Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-21325 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049910150 | ||
003 | DE-604 | ||
005 | 20241104 | ||
007 | cr|uuu---uuuuu | ||
008 | 241016s2024 xx a||| om||| 00||| eng d | ||
024 | 7 | |a 10.14279/depositonce-21325 |2 doi | |
035 | |a (OCoLC)1466913851 | ||
035 | |a (DE-599)BVBBV049910150 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 690 |0 (DE-625)143691: |2 rvk | ||
100 | 1 | |a Gebauer, Niklas |e Verfasser |0 (DE-588)1347182357 |4 aut | |
245 | 1 | 0 | |a Autoregressive generative neural networks for the inverse design of 3d molecular structures |c vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc. |
264 | 1 | |a Berlin |c 2024 | |
300 | |a 1 Online-Ressource (x, 122 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2024 | ||
650 | 0 | 7 | |a Generative Adversarial Network |0 (DE-588)1220245119 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekülstruktur |0 (DE-588)4170383-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | 1 | |a Molekülstruktur |0 (DE-588)4170383-2 |D s |
689 | 0 | 2 | |a Generative Adversarial Network |0 (DE-588)1220245119 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |w (DE-604)BV049910144 |
856 | 4 | 0 | |u https://doi.org/10.14279/depositonce-21325 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035248933 |
Datensatz im Suchindex
_version_ | 1817704105815048192 |
---|---|
adam_text | |
any_adam_object | |
author | Gebauer, Niklas |
author_GND | (DE-588)1347182357 |
author_facet | Gebauer, Niklas |
author_role | aut |
author_sort | Gebauer, Niklas |
author_variant | n g ng |
building | Verbundindex |
bvnumber | BV049910150 |
classification_rvk | ST 690 |
collection | ebook |
ctrlnum | (OCoLC)1466913851 (DE-599)BVBBV049910150 |
discipline | Informatik |
doi_str_mv | 10.14279/depositonce-21325 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049910150</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241104</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241016s2024 xx a||| om||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14279/depositonce-21325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466913851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049910150</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 690</subfield><subfield code="0">(DE-625)143691:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gebauer, Niklas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1347182357</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autoregressive generative neural networks for the inverse design of 3d molecular structures</subfield><subfield code="c">vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 122 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2024</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Generative Adversarial Network</subfield><subfield code="0">(DE-588)1220245119</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülstruktur</subfield><subfield code="0">(DE-588)4170383-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Molekülstruktur</subfield><subfield code="0">(DE-588)4170383-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Generative Adversarial Network</subfield><subfield code="0">(DE-588)1220245119</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="w">(DE-604)BV049910144</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14279/depositonce-21325</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035248933</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049910150 |
illustrated | Illustrated |
indexdate | 2024-12-06T15:08:40Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035248933 |
oclc_num | 1466913851 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (x, 122 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
record_format | marc |
spelling | Gebauer, Niklas Verfasser (DE-588)1347182357 aut Autoregressive generative neural networks for the inverse design of 3d molecular structures vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc. Berlin 2024 1 Online-Ressource (x, 122 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Technische Universität Berlin 2024 Generative Adversarial Network (DE-588)1220245119 gnd rswk-swf Molekülstruktur (DE-588)4170383-2 gnd rswk-swf Quantenchemie (DE-588)4047979-1 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Quantenchemie (DE-588)4047979-1 s Molekülstruktur (DE-588)4170383-2 s Generative Adversarial Network (DE-588)1220245119 s DE-604 Erscheint auch als Druck-Ausgabe (DE-604)BV049910144 https://doi.org/10.14279/depositonce-21325 Resolving-System kostenfrei Volltext |
spellingShingle | Gebauer, Niklas Autoregressive generative neural networks for the inverse design of 3d molecular structures Generative Adversarial Network (DE-588)1220245119 gnd Molekülstruktur (DE-588)4170383-2 gnd Quantenchemie (DE-588)4047979-1 gnd |
subject_GND | (DE-588)1220245119 (DE-588)4170383-2 (DE-588)4047979-1 (DE-588)4113937-9 |
title | Autoregressive generative neural networks for the inverse design of 3d molecular structures |
title_auth | Autoregressive generative neural networks for the inverse design of 3d molecular structures |
title_exact_search | Autoregressive generative neural networks for the inverse design of 3d molecular structures |
title_full | Autoregressive generative neural networks for the inverse design of 3d molecular structures vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc. |
title_fullStr | Autoregressive generative neural networks for the inverse design of 3d molecular structures vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc. |
title_full_unstemmed | Autoregressive generative neural networks for the inverse design of 3d molecular structures vorgelegt von Niklas Wolf Andreas Gebauer, M.Sc. |
title_short | Autoregressive generative neural networks for the inverse design of 3d molecular structures |
title_sort | autoregressive generative neural networks for the inverse design of 3d molecular structures |
topic | Generative Adversarial Network (DE-588)1220245119 gnd Molekülstruktur (DE-588)4170383-2 gnd Quantenchemie (DE-588)4047979-1 gnd |
topic_facet | Generative Adversarial Network Molekülstruktur Quantenchemie Hochschulschrift |
url | https://doi.org/10.14279/depositonce-21325 |
work_keys_str_mv | AT gebauerniklas autoregressivegenerativeneuralnetworksfortheinversedesignof3dmolecularstructures |