The mereology of classes:
"This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2024
|
Schriftenreihe: | Cambridge elements : elements in the philosophy of mathematics
|
Schlagworte: | |
Zusammenfassung: | "This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a clear picture of the mereology of classes may provide further insights into the foundations of set theory. We will consider two main perspectives on the mereology of classes on which classes are indeed composed of further parts. They, however, disagree as to the identity of those parts. Each perspective admits more than one implementation, and one of the purposes of this work is to explain what is at stake with each choice." |
Beschreibung: | 72 Seiten 6 Illustrationen 22,8 cm |
ISBN: | 9781009096416 9781009500975 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049906046 | ||
003 | DE-604 | ||
005 | 20241114 | ||
007 | t| | ||
008 | 241014s2024 xx a||| |||| 00||| eng d | ||
020 | |a 9781009096416 |c pbk |9 978-1-009-09641-6 | ||
020 | |a 9781009500975 |c hbk |9 978-1-009-50097-5 | ||
035 | |a (DE-599)BVBBV049906046 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
082 | 0 | |a 511.3/22 | |
100 | 1 | |a Uzquiano, Gabriel |e Verfasser |0 (DE-588)1344879195 |4 aut | |
245 | 1 | 0 | |a The mereology of classes |c Gabriel Uzquiano (University of Southern California) |
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2024 | |
300 | |a 72 Seiten |b 6 Illustrationen |c 22,8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge elements : elements in the philosophy of mathematics | |
520 | 3 | |a "This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a clear picture of the mereology of classes may provide further insights into the foundations of set theory. We will consider two main perspectives on the mereology of classes on which classes are indeed composed of further parts. They, however, disagree as to the identity of those parts. Each perspective admits more than one implementation, and one of the purposes of this work is to explain what is at stake with each choice." | |
650 | 4 | |a Set theory | |
650 | 4 | |a Whole and parts (Philosophy) | |
650 | 0 | 7 | |a Mereologie |0 (DE-588)4169453-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Teil-Ganzes-Beziehung |0 (DE-588)4184609-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mereologie |0 (DE-588)4169453-3 |D s |
689 | 0 | 1 | |a Teil-Ganzes-Beziehung |0 (DE-588)4184609-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-50097-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-09224-1 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035244903 |
Datensatz im Suchindex
_version_ | 1815710495609454592 |
---|---|
adam_text | |
any_adam_object | |
author | Uzquiano, Gabriel |
author_GND | (DE-588)1344879195 |
author_facet | Uzquiano, Gabriel |
author_role | aut |
author_sort | Uzquiano, Gabriel |
author_variant | g u gu |
building | Verbundindex |
bvnumber | BV049906046 |
ctrlnum | (DE-599)BVBBV049906046 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049906046</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241114</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241014s2024 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009096416</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-009-09641-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009500975</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-009-50097-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049906046</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uzquiano, Gabriel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1344879195</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mereology of classes</subfield><subfield code="c">Gabriel Uzquiano (University of Southern California)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">72 Seiten</subfield><subfield code="b">6 Illustrationen</subfield><subfield code="c">22,8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements : elements in the philosophy of mathematics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a clear picture of the mereology of classes may provide further insights into the foundations of set theory. We will consider two main perspectives on the mereology of classes on which classes are indeed composed of further parts. They, however, disagree as to the identity of those parts. Each perspective admits more than one implementation, and one of the purposes of this work is to explain what is at stake with each choice."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whole and parts (Philosophy)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mereologie</subfield><subfield code="0">(DE-588)4169453-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teil-Ganzes-Beziehung</subfield><subfield code="0">(DE-588)4184609-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mereologie</subfield><subfield code="0">(DE-588)4169453-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Teil-Ganzes-Beziehung</subfield><subfield code="0">(DE-588)4184609-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-50097-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-09224-1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035244903</subfield></datafield></record></collection> |
id | DE-604.BV049906046 |
illustrated | Illustrated |
indexdate | 2024-11-14T15:01:05Z |
institution | BVB |
isbn | 9781009096416 9781009500975 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035244903 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 72 Seiten 6 Illustrationen 22,8 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements : elements in the philosophy of mathematics |
spelling | Uzquiano, Gabriel Verfasser (DE-588)1344879195 aut The mereology of classes Gabriel Uzquiano (University of Southern California) Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2024 72 Seiten 6 Illustrationen 22,8 cm txt rdacontent n rdamedia nc rdacarrier Cambridge elements : elements in the philosophy of mathematics "This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a clear picture of the mereology of classes may provide further insights into the foundations of set theory. We will consider two main perspectives on the mereology of classes on which classes are indeed composed of further parts. They, however, disagree as to the identity of those parts. Each perspective admits more than one implementation, and one of the purposes of this work is to explain what is at stake with each choice." Set theory Whole and parts (Philosophy) Mereologie (DE-588)4169453-3 gnd rswk-swf Teil-Ganzes-Beziehung (DE-588)4184609-6 gnd rswk-swf Mereologie (DE-588)4169453-3 s Teil-Ganzes-Beziehung (DE-588)4184609-6 s DE-604 Erscheint auch als Online-Ausgabe 978-1-009-50097-5 Erscheint auch als Online-Ausgabe 978-1-009-09224-1 |
spellingShingle | Uzquiano, Gabriel The mereology of classes Set theory Whole and parts (Philosophy) Mereologie (DE-588)4169453-3 gnd Teil-Ganzes-Beziehung (DE-588)4184609-6 gnd |
subject_GND | (DE-588)4169453-3 (DE-588)4184609-6 |
title | The mereology of classes |
title_auth | The mereology of classes |
title_exact_search | The mereology of classes |
title_full | The mereology of classes Gabriel Uzquiano (University of Southern California) |
title_fullStr | The mereology of classes Gabriel Uzquiano (University of Southern California) |
title_full_unstemmed | The mereology of classes Gabriel Uzquiano (University of Southern California) |
title_short | The mereology of classes |
title_sort | the mereology of classes |
topic | Set theory Whole and parts (Philosophy) Mereologie (DE-588)4169453-3 gnd Teil-Ganzes-Beziehung (DE-588)4184609-6 gnd |
topic_facet | Set theory Whole and parts (Philosophy) Mereologie Teil-Ganzes-Beziehung |
work_keys_str_mv | AT uzquianogabriel themereologyofclasses |