Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature Switzerland
2024
Cham Springer |
Ausgabe: | 1st ed. 2024 |
Schriftenreihe: | Lecture Notes in Mathematics
2349 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-1050 DE-92 DE-898 DE-861 DE-863 DE-862 DE-523 DE-91 DE-19 DE-703 DE-20 DE-706 DE-824 DE-739 Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 230 p. 1 illus) |
ISBN: | 9783031572012 |
ISSN: | 1617-9692 |
DOI: | 10.1007/978-3-031-57201-2 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049903487 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241014s2024 xx o|||| 00||| eng d | ||
020 | |a 9783031572012 |c Online |9 978-3-031-57201-2 | ||
024 | 7 | |a 10.1007/978-3-031-57201-2 |2 doi | |
035 | |a (ZDB-2-SMA)9783031572012 | ||
035 | |a (ZDB-2-LNM)9783031572012 | ||
035 | |a (OCoLC)1466937529 | ||
035 | |a (DE-599)BVBBV049903487 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-863 |a DE-824 |a DE-706 |a DE-898 |a DE-634 |a DE-19 |a DE-92 |a DE-862 |a DE-20 |a DE-861 |a DE-703 |a DE-91 |a DE-739 |a DE-523 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Oertel, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions |c by Frank Oertel |
250 | |a 1st ed. 2024 | ||
264 | 1 | |a Cham |b Springer Nature Switzerland |c 2024 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (XVI, 230 p. 1 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Mathematics |v 2349 |x 1617-9692 | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Probability Theory | |
650 | 4 | |a Mathematical Physics | |
650 | 4 | |a Optimization | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematical optimization | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-57200-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-57202-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-031-57201-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2024 | |
940 | 1 | |q ZDB-2-LNM_2024 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035242398 | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-634 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-1050 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-92 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-898 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-861 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-863 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-862 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-523 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-91 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-19 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-703 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-20 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-706 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-824 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57201-2 |l DE-739 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819652168235352064 |
---|---|
adam_text | |
any_adam_object | |
author | Oertel, Frank |
author_facet | Oertel, Frank |
author_role | aut |
author_sort | Oertel, Frank |
author_variant | f o fo |
building | Verbundindex |
bvnumber | BV049903487 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783031572012 (ZDB-2-LNM)9783031572012 (OCoLC)1466937529 (DE-599)BVBBV049903487 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-031-57201-2 |
edition | 1st ed. 2024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV049903487</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241014s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031572012</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-031-57201-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-57201-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783031572012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783031572012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466937529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049903487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oertel, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions</subfield><subfield code="c">by Frank Oertel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature Switzerland</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 230 p. 1 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2349</subfield><subfield code="x">1617-9692</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-57200-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-57202-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2024</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2024</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035242398</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57201-2</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049903487 |
illustrated | Not Illustrated |
indexdate | 2024-12-28T04:12:17Z |
institution | BVB |
isbn | 9783031572012 |
issn | 1617-9692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035242398 |
oclc_num | 1466937529 |
open_access_boolean | |
owner | DE-1050 DE-863 DE-BY-FWS DE-824 DE-706 DE-898 DE-BY-UBR DE-634 DE-19 DE-BY-UBM DE-92 DE-862 DE-BY-FWS DE-20 DE-861 DE-703 DE-91 DE-BY-TUM DE-739 DE-523 |
owner_facet | DE-1050 DE-863 DE-BY-FWS DE-824 DE-706 DE-898 DE-BY-UBR DE-634 DE-19 DE-BY-UBM DE-92 DE-862 DE-BY-FWS DE-20 DE-861 DE-703 DE-91 DE-BY-TUM DE-739 DE-523 |
physical | 1 Online-Ressource (XVI, 230 p. 1 illus) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2024 ZDB-2-LNM_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer Nature Switzerland Springer |
record_format | marc |
series2 | Lecture Notes in Mathematics |
spellingShingle | Oertel, Frank Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions Functional Analysis Probability Theory Mathematical Physics Optimization Functional analysis Probabilities Mathematical physics Mathematical optimization |
title | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions |
title_auth | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions |
title_exact_search | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions |
title_full | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions by Frank Oertel |
title_fullStr | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions by Frank Oertel |
title_full_unstemmed | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions by Frank Oertel |
title_short | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions |
title_sort | upper bounds for grothendieck constants quantum correlation matrices and ccp functions |
topic | Functional Analysis Probability Theory Mathematical Physics Optimization Functional analysis Probabilities Mathematical physics Mathematical optimization |
topic_facet | Functional Analysis Probability Theory Mathematical Physics Optimization Functional analysis Probabilities Mathematical physics Mathematical optimization |
url | https://doi.org/10.1007/978-3-031-57201-2 |
work_keys_str_mv | AT oertelfrank upperboundsforgrothendieckconstantsquantumcorrelationmatricesandccpfunctions |