Abstract algebra: a first course
When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2022
|
Ausgabe: | Second edition |
Schriftenreihe: | Textbooks in mathematics
|
Schlagworte: | |
Zusammenfassung: | When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations. In high school algebra, a student explores properties of operations (+, -, ×, and ÷) on real numbers. Abstract algebra studies properties of operations without specifying what types of number or object we work with. Any theorem established in the abstract context holds not only for real numbers but for every possible algebraic structure that has operations with the stated properties.This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory. The writing style is student-centered, conscientiously motivating definitions and offering many illustrative examples. Various sections or sometimes just examples or exercises introduce applications to geometry, number theory, cryptography and many other areas.This book offers a unique feature in the lists of projects at the end of each section. the author does not view projects as just something extra or cute, but rather an opportunity for a student to work on and demonstrate their potential for open-ended investigation.The projects ideas come in two flavors: investigative or expository. The investigative projects briefly present a topic and posed open-ended questions that invite the student to explore the topic, asking and to trying to answer their own questions. Expository projects invite the student to explore a topic with algebraic content or pertain to a particular mathematician’s work through responsible research.The exercises challenge the student to prove new results using the theorems presented in the text. The student then becomes an active participant in the development of the field |
Beschreibung: | 1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange’s Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow’s Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index. |
Beschreibung: | xii, 557 Seiten Illustrationen 1050 gr |
ISBN: | 9781032289397 9781032289410 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049901983 | ||
003 | DE-604 | ||
005 | 20241129 | ||
007 | t| | ||
008 | 241010s2022 xx a||| |||| 00||| eng d | ||
020 | |a 9781032289397 |c hbk |9 978-1-032-28939-7 | ||
020 | |a 9781032289410 |c pbk |9 978-1-03-228941-0 | ||
024 | 3 | |a 9781032289410 | |
035 | |a (OCoLC)1345214449 | ||
035 | |a (DE-599)BVBBV049901983 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Lovett, Stephen |e Verfasser |0 (DE-588)1022271741 |4 aut | |
245 | 1 | 0 | |a Abstract algebra |b a first course |c Stephen Lovett, Wheaton College, USA |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2022 | |
300 | |a xii, 557 Seiten |b Illustrationen |c 1050 gr | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Textbooks in mathematics | |
500 | |a 1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange’s Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow’s Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index. | ||
520 | |a When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations. In high school algebra, a student explores properties of operations (+, -, ×, and ÷) on real numbers. Abstract algebra studies properties of operations without specifying what types of number or object we work with. Any theorem established in the abstract context holds not only for real numbers but for every possible algebraic structure that has operations with the stated properties.This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory. | ||
520 | |a The writing style is student-centered, conscientiously motivating definitions and offering many illustrative examples. Various sections or sometimes just examples or exercises introduce applications to geometry, number theory, cryptography and many other areas.This book offers a unique feature in the lists of projects at the end of each section. the author does not view projects as just something extra or cute, but rather an opportunity for a student to work on and demonstrate their potential for open-ended investigation.The projects ideas come in two flavors: investigative or expository. The investigative projects briefly present a topic and posed open-ended questions that invite the student to explore the topic, asking and to trying to answer their own questions. | ||
520 | |a Expository projects invite the student to explore a topic with algebraic content or pertain to a particular mathematician’s work through responsible research.The exercises challenge the student to prove new results using the theorems presented in the text. The student then becomes an active participant in the development of the field | ||
650 | 4 | |a bicssc / Science - general issues | |
650 | 4 | |a bicssc / Groups & group theory | |
650 | 4 | |a bisacsh / MATHEMATICS / General | |
650 | 0 | 7 | |a Universelle Algebra |0 (DE-588)4061777-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Universelle Algebra |0 (DE-588)4061777-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-003-29923-3 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035240924 |
Datensatz im Suchindex
_version_ | 1822482916604641280 |
---|---|
adam_text | |
any_adam_object | |
author | Lovett, Stephen |
author_GND | (DE-588)1022271741 |
author_facet | Lovett, Stephen |
author_role | aut |
author_sort | Lovett, Stephen |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV049901983 |
ctrlnum | (OCoLC)1345214449 (DE-599)BVBBV049901983 |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049901983</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241129</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241010s2022 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032289397</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-032-28939-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032289410</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-03-228941-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781032289410</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1345214449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049901983</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lovett, Stephen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022271741</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abstract algebra</subfield><subfield code="b">a first course</subfield><subfield code="c">Stephen Lovett, Wheaton College, USA</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 557 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">1050 gr</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Textbooks in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange’s Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow’s Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations. In high school algebra, a student explores properties of operations (+, -, ×, and ÷) on real numbers. Abstract algebra studies properties of operations without specifying what types of number or object we work with. Any theorem established in the abstract context holds not only for real numbers but for every possible algebraic structure that has operations with the stated properties.This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The writing style is student-centered, conscientiously motivating definitions and offering many illustrative examples. Various sections or sometimes just examples or exercises introduce applications to geometry, number theory, cryptography and many other areas.This book offers a unique feature in the lists of projects at the end of each section. the author does not view projects as just something extra or cute, but rather an opportunity for a student to work on and demonstrate their potential for open-ended investigation.The projects ideas come in two flavors: investigative or expository. The investigative projects briefly present a topic and posed open-ended questions that invite the student to explore the topic, asking and to trying to answer their own questions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expository projects invite the student to explore a topic with algebraic content or pertain to a particular mathematician’s work through responsible research.The exercises challenge the student to prove new results using the theorems presented in the text. The student then becomes an active participant in the development of the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Science - general issues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Groups & group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / MATHEMATICS / General</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-29923-3</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035240924</subfield></datafield></record></collection> |
id | DE-604.BV049901983 |
illustrated | Illustrated |
indexdate | 2025-01-28T09:05:49Z |
institution | BVB |
isbn | 9781032289397 9781032289410 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035240924 |
oclc_num | 1345214449 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xii, 557 Seiten Illustrationen 1050 gr |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Textbooks in mathematics |
spelling | Lovett, Stephen Verfasser (DE-588)1022271741 aut Abstract algebra a first course Stephen Lovett, Wheaton College, USA Second edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2022 xii, 557 Seiten Illustrationen 1050 gr txt rdacontent n rdamedia nc rdacarrier Textbooks in mathematics 1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange’s Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow’s Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index. When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations. In high school algebra, a student explores properties of operations (+, -, ×, and ÷) on real numbers. Abstract algebra studies properties of operations without specifying what types of number or object we work with. Any theorem established in the abstract context holds not only for real numbers but for every possible algebraic structure that has operations with the stated properties.This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory. The writing style is student-centered, conscientiously motivating definitions and offering many illustrative examples. Various sections or sometimes just examples or exercises introduce applications to geometry, number theory, cryptography and many other areas.This book offers a unique feature in the lists of projects at the end of each section. the author does not view projects as just something extra or cute, but rather an opportunity for a student to work on and demonstrate their potential for open-ended investigation.The projects ideas come in two flavors: investigative or expository. The investigative projects briefly present a topic and posed open-ended questions that invite the student to explore the topic, asking and to trying to answer their own questions. Expository projects invite the student to explore a topic with algebraic content or pertain to a particular mathematician’s work through responsible research.The exercises challenge the student to prove new results using the theorems presented in the text. The student then becomes an active participant in the development of the field bicssc / Science - general issues bicssc / Groups & group theory bisacsh / MATHEMATICS / General Universelle Algebra (DE-588)4061777-4 gnd rswk-swf Universelle Algebra (DE-588)4061777-4 s DE-604 Erscheint auch als Online-Ausgabe 978-1-003-29923-3 |
spellingShingle | Lovett, Stephen Abstract algebra a first course bicssc / Science - general issues bicssc / Groups & group theory bisacsh / MATHEMATICS / General Universelle Algebra (DE-588)4061777-4 gnd |
subject_GND | (DE-588)4061777-4 |
title | Abstract algebra a first course |
title_auth | Abstract algebra a first course |
title_exact_search | Abstract algebra a first course |
title_full | Abstract algebra a first course Stephen Lovett, Wheaton College, USA |
title_fullStr | Abstract algebra a first course Stephen Lovett, Wheaton College, USA |
title_full_unstemmed | Abstract algebra a first course Stephen Lovett, Wheaton College, USA |
title_short | Abstract algebra |
title_sort | abstract algebra a first course |
title_sub | a first course |
topic | bicssc / Science - general issues bicssc / Groups & group theory bisacsh / MATHEMATICS / General Universelle Algebra (DE-588)4061777-4 gnd |
topic_facet | bicssc / Science - general issues bicssc / Groups & group theory bisacsh / MATHEMATICS / General Universelle Algebra |
work_keys_str_mv | AT lovettstephen abstractalgebraafirstcourse |