An introduction to hypergeometric functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2024]
|
Ausgabe: | 2024 |
Schlagworte: | |
Beschreibung: | This textbook provides an elementary introduction to hypergeometric functions, which generalize the usual elementary functions. It includes plenty of solved exercises and it is appropriate for a wide audience, starting from undergraduate students in mathematics, physics and engineering. Since the presented functions are limited to hypergeometric functions of a real variable, the only prerequisites are the basics of real analysis - 1. Eulerian Functions.- 2. Polygamma Functions.- 3. Hypergeometric Functions.- 4. Gauss Hypergeometric Function.- 5. Elliptic Integrals.- 6. Kummer Hypergeometric Function.- 7. Bessel Functions.- 8. Polylogarithm Function.- 9. Classical Orthogonal Polynomials.- 10. q-Hypergeometric Functions. |
Beschreibung: | xiii, 368 Seiten 235 mm |
ISBN: | 9783031651434 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049901982 | ||
003 | DE-604 | ||
005 | 20241202 | ||
007 | t| | ||
008 | 241010s2024 xx |||| 00||| eng d | ||
020 | |a 9783031651434 |9 978-3-031-65143-4 | ||
024 | 3 | |a 9783031651434 | |
035 | |a (DE-599)BVBBV049901982 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
100 | 1 | |a Duverney, Daniel |d 1955- |e Verfasser |0 (DE-588)142985287 |4 aut | |
240 | 1 | 0 | |a Introduction aux fonctions hypergéométriques |
245 | 1 | 0 | |a An introduction to hypergeometric functions |c Daniel Duverney |
264 | 1 | |a Cham |b Birkhäuser |c [2024] | |
300 | |a xiii, 368 Seiten |c 235 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a This textbook provides an elementary introduction to hypergeometric functions, which generalize the usual elementary functions. It includes plenty of solved exercises and it is appropriate for a wide audience, starting from undergraduate students in mathematics, physics and engineering. Since the presented functions are limited to hypergeometric functions of a real variable, the only prerequisites are the basics of real analysis | ||
500 | |a - 1. Eulerian Functions.- 2. Polygamma Functions.- 3. Hypergeometric Functions.- 4. Gauss Hypergeometric Function.- 5. Elliptic Integrals.- 6. Kummer Hypergeometric Function.- 7. Bessel Functions.- 8. Polylogarithm Function.- 9. Classical Orthogonal Polynomials.- 10. q-Hypergeometric Functions. | ||
650 | 4 | |a Special functions | |
650 | 0 | 7 | |a Spezielle Funktion |0 (DE-588)4182213-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Mathematik/Analysis | ||
689 | 0 | 0 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 0 | 1 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-65144-1 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035240923 |
Datensatz im Suchindex
_version_ | 1817348804213473280 |
---|---|
adam_text | |
any_adam_object | |
author | Duverney, Daniel 1955- |
author_GND | (DE-588)142985287 |
author_facet | Duverney, Daniel 1955- |
author_role | aut |
author_sort | Duverney, Daniel 1955- |
author_variant | d d dd |
building | Verbundindex |
bvnumber | BV049901982 |
classification_rvk | SK 680 |
ctrlnum | (DE-599)BVBBV049901982 |
discipline | Mathematik |
edition | 2024 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049901982</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241202</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241010s2024 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031651434</subfield><subfield code="9">978-3-031-65143-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031651434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049901982</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duverney, Daniel</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142985287</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Introduction aux fonctions hypergéométriques</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to hypergeometric functions</subfield><subfield code="c">Daniel Duverney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 368 Seiten</subfield><subfield code="c">235 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This textbook provides an elementary introduction to hypergeometric functions, which generalize the usual elementary functions. It includes plenty of solved exercises and it is appropriate for a wide audience, starting from undergraduate students in mathematics, physics and engineering. Since the presented functions are limited to hypergeometric functions of a real variable, the only prerequisites are the basics of real analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">- 1. Eulerian Functions.- 2. Polygamma Functions.- 3. Hypergeometric Functions.- 4. Gauss Hypergeometric Function.- 5. Elliptic Integrals.- 6. Kummer Hypergeometric Function.- 7. Bessel Functions.- 8. Polylogarithm Function.- 9. Classical Orthogonal Polynomials.- 10. q-Hypergeometric Functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Analysis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-65144-1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035240923</subfield></datafield></record></collection> |
id | DE-604.BV049901982 |
illustrated | Not Illustrated |
indexdate | 2024-12-02T17:01:18Z |
institution | BVB |
isbn | 9783031651434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035240923 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xiii, 368 Seiten 235 mm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Birkhäuser |
record_format | marc |
spelling | Duverney, Daniel 1955- Verfasser (DE-588)142985287 aut Introduction aux fonctions hypergéométriques An introduction to hypergeometric functions Daniel Duverney Cham Birkhäuser [2024] xiii, 368 Seiten 235 mm txt rdacontent n rdamedia nc rdacarrier This textbook provides an elementary introduction to hypergeometric functions, which generalize the usual elementary functions. It includes plenty of solved exercises and it is appropriate for a wide audience, starting from undergraduate students in mathematics, physics and engineering. Since the presented functions are limited to hypergeometric functions of a real variable, the only prerequisites are the basics of real analysis - 1. Eulerian Functions.- 2. Polygamma Functions.- 3. Hypergeometric Functions.- 4. Gauss Hypergeometric Function.- 5. Elliptic Integrals.- 6. Kummer Hypergeometric Function.- 7. Bessel Functions.- 8. Polylogarithm Function.- 9. Classical Orthogonal Polynomials.- 10. q-Hypergeometric Functions. Special functions Spezielle Funktion (DE-588)4182213-4 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf Hardcover, Softcover / Mathematik/Analysis Spezielle Funktion (DE-588)4182213-4 s Hypergeometrische Reihe (DE-588)4161061-1 s DE-604 Erscheint auch als Online-Ausgabe 978-3-031-65144-1 |
spellingShingle | Duverney, Daniel 1955- An introduction to hypergeometric functions Special functions Spezielle Funktion (DE-588)4182213-4 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd |
subject_GND | (DE-588)4182213-4 (DE-588)4161061-1 |
title | An introduction to hypergeometric functions |
title_alt | Introduction aux fonctions hypergéométriques |
title_auth | An introduction to hypergeometric functions |
title_exact_search | An introduction to hypergeometric functions |
title_full | An introduction to hypergeometric functions Daniel Duverney |
title_fullStr | An introduction to hypergeometric functions Daniel Duverney |
title_full_unstemmed | An introduction to hypergeometric functions Daniel Duverney |
title_short | An introduction to hypergeometric functions |
title_sort | an introduction to hypergeometric functions |
topic | Special functions Spezielle Funktion (DE-588)4182213-4 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd |
topic_facet | Special functions Spezielle Funktion Hypergeometrische Reihe |
work_keys_str_mv | AT duverneydaniel introductionauxfonctionshypergeometriques AT duverneydaniel anintroductiontohypergeometricfunctions |