Explainable artificial intelligence for intelligent transportation systems:
"Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amena...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
2024
|
Schlagworte: | |
Online-Zugang: | DE-573 Volltext |
Zusammenfassung: | "Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (x, 275 Seiten) |
ISBN: | 9781003324140 |
DOI: | 10.1201/9781003324140 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049901789 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241010s2024 xxu o|||| 00||| eng d | ||
020 | |a 9781003324140 |c ebook |9 978-1-003-32414-0 | ||
024 | 7 | |a 10.1201/9781003324140 |2 doi | |
035 | |a (OCoLC)1466931221 | ||
035 | |a (DE-599)BVBBV049901789 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-573 | ||
082 | 0 | |a 388.3/12 |2 23 | |
245 | 1 | 0 | |a Explainable artificial intelligence for intelligent transportation systems |c edited by Amina Adadi, Afaf Bouhoute |
246 | 1 | 3 | |a Explainable AI for intelligent transportation systems |
264 | 1 | |a Boca Raton |b CRC Press |c 2024 | |
300 | |a 1 Online-Ressource (x, 275 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"-- | |
653 | 0 | |a Intelligent transportation systems | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Artificial intelligence / (OCoLC)fst00817247 | |
653 | 0 | |a Intelligent transportation systems / (OCoLC)fst01723430 | |
700 | 1 | |a Adadi, Amina |4 edt | |
700 | 1 | |a Bouhoute, Afaf |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |t Explainable AI for Intelligent transportation systems |d Boca Raton : CRC Press, 2024 |h pages cm |z 9781032344577 |z 9781032348537 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003324140 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-4-NLEBK | ||
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035240730 | |
966 | e | |u https://doi.org/10.1201/9781003324140 |l DE-573 |p ZDB-7-TFC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817703978741268480 |
---|---|
adam_text | |
any_adam_object | |
author2 | Adadi, Amina Bouhoute, Afaf |
author2_role | edt edt |
author2_variant | a a aa a b ab |
author_facet | Adadi, Amina Bouhoute, Afaf |
building | Verbundindex |
bvnumber | BV049901789 |
collection | ZDB-4-NLEBK ZDB-7-TFC |
ctrlnum | (OCoLC)1466931221 (DE-599)BVBBV049901789 |
dewey-full | 388.3/12 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 388 - Transportation |
dewey-raw | 388.3/12 |
dewey-search | 388.3/12 |
dewey-sort | 3388.3 212 |
dewey-tens | 380 - Commerce, communications, transportation |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1201/9781003324140 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049901789</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241010s2024 xxu o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003324140</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-003-32414-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003324140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466931221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049901789</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">388.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explainable artificial intelligence for intelligent transportation systems</subfield><subfield code="c">edited by Amina Adadi, Afaf Bouhoute</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Explainable AI for intelligent transportation systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 275 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligent transportation systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence / (OCoLC)fst00817247</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligent transportation systems / (OCoLC)fst01723430</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adadi, Amina</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouhoute, Afaf</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="t">Explainable AI for Intelligent transportation systems</subfield><subfield code="d">Boca Raton : CRC Press, 2024</subfield><subfield code="h">pages cm</subfield><subfield code="z">9781032344577</subfield><subfield code="z">9781032348537</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003324140</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035240730</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003324140</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049901789 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T15:06:39Z |
institution | BVB |
isbn | 9781003324140 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035240730 |
oclc_num | 1466931221 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (x, 275 Seiten) |
psigel | ZDB-4-NLEBK ZDB-7-TFC |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | CRC Press |
record_format | marc |
spelling | Explainable artificial intelligence for intelligent transportation systems edited by Amina Adadi, Afaf Bouhoute Explainable AI for intelligent transportation systems Boca Raton CRC Press 2024 1 Online-Ressource (x, 275 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"-- Intelligent transportation systems Artificial intelligence Artificial intelligence / (OCoLC)fst00817247 Intelligent transportation systems / (OCoLC)fst01723430 Adadi, Amina edt Bouhoute, Afaf edt Erscheint auch als Druck-Ausgabe Explainable AI for Intelligent transportation systems Boca Raton : CRC Press, 2024 pages cm 9781032344577 9781032348537 https://doi.org/10.1201/9781003324140 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Explainable artificial intelligence for intelligent transportation systems |
title | Explainable artificial intelligence for intelligent transportation systems |
title_alt | Explainable AI for intelligent transportation systems |
title_auth | Explainable artificial intelligence for intelligent transportation systems |
title_exact_search | Explainable artificial intelligence for intelligent transportation systems |
title_full | Explainable artificial intelligence for intelligent transportation systems edited by Amina Adadi, Afaf Bouhoute |
title_fullStr | Explainable artificial intelligence for intelligent transportation systems edited by Amina Adadi, Afaf Bouhoute |
title_full_unstemmed | Explainable artificial intelligence for intelligent transportation systems edited by Amina Adadi, Afaf Bouhoute |
title_short | Explainable artificial intelligence for intelligent transportation systems |
title_sort | explainable artificial intelligence for intelligent transportation systems |
url | https://doi.org/10.1201/9781003324140 |
work_keys_str_mv | AT adadiamina explainableartificialintelligenceforintelligenttransportationsystems AT bouhouteafaf explainableartificialintelligenceforintelligenttransportationsystems AT adadiamina explainableaiforintelligenttransportationsystems AT bouhouteafaf explainableaiforintelligenttransportationsystems |