Building AI Intensive Python Applications: create intelligent apps with LLMs and vector databases

Cover -- FM -- Table of Contents -- Preface -- Chapter 1: Getting Started with Generative AI -- Technical requirements -- Defining the terminology -- The generative AI stack -- Python and GenAI -- OpenAI API -- MongoDB with Vector Search -- Important features of generative AI -- Why use generative A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Palmer, Rachelle (VerfasserIn), Perlmutter, Ben (VerfasserIn), Gangadhar, Ashwin (VerfasserIn), Larew, Nicholas (VerfasserIn), Narváez, Sigfrido (VerfasserIn), Rueckstiess, Thomas (VerfasserIn), Weller, Henry (VerfasserIn), Alake, Richmond (VerfasserIn), Ranjan, Shubham (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing, Limited 2024
Ausgabe:First edition
Online-Zugang:DE-1102
Zusammenfassung:Cover -- FM -- Table of Contents -- Preface -- Chapter 1: Getting Started with Generative AI -- Technical requirements -- Defining the terminology -- The generative AI stack -- Python and GenAI -- OpenAI API -- MongoDB with Vector Search -- Important features of generative AI -- Why use generative AI? -- The ethics and risks of GenAI -- Summary -- Chapter 2: Building Blocks of Intelligent Applications -- Technical requirements -- Defining intelligent applications -- The building blocks of intelligent applications -- LLMs - reasoning engines for intelligent apps -- Use cases for LLM reasoning engines -- Diverse capabilities of LLMs -- Multi-modal language models -- A paradigm shift in AI development -- Embedding models and vector databases - semantic long-term memory -- Embedding models -- Vector databases -- Model hosting -- Your (soon-to-be) intelligent app -- Sample application - RAG chatbot -- Implications of intelligent applications for software engineering -- Summary -- Part 1 -- Foundations of AI: LLMs, Embedding Models, Vector Databases, and Application Design -- Chapter 3: Large Language Models -- Technical requirements -- Probabilistic framework -- n-gram language models -- Machine learning for language modelling -- Artificial neural networks -- Training an artificial neural network -- ANNs for natural language processing -- Tokenization -- Embedding -- Predicting probability distributions -- Dealing with sequential data -- Recurrent neural networks -- Transformer architecture -- LLMs in practice -- The evolving field of LLMs -- Prompting, fine-tuning, and RAG -- Summary -- Chapter 4: Embedding Models -- Technical requirements -- What is an embedding model? -- How do embedding models differ from LLMs? -- When to use embedding models versus LLMs -- Types of embedding models -- Choosing embedding models -- Task requirements.
Beschreibung:1 Online-Ressource (xviii, 273 Seiten) Illustrationen
ISBN:9781836207245

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!