Emerging Technologies for Developing Countries: 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2023
|
Ausgabe: | 1st ed |
Schriftenreihe: | Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series
v.503 |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (231 Seiten) |
ISBN: | 9783031358838 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049876310 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2023 xx o|||| 00||| eng d | ||
020 | |a 9783031358838 |9 978-3-031-35883-8 | ||
035 | |a (ZDB-30-PQE)EBC30620225 | ||
035 | |a (ZDB-30-PAD)EBC30620225 | ||
035 | |a (ZDB-89-EBL)EBL30620225 | ||
035 | |a (OCoLC)1394922511 | ||
035 | |a (DE-599)BVBBV049876310 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 338.064091724 | |
100 | 1 | |a Masinde, Muthoni |e Verfasser |4 aut | |
245 | 1 | 0 | |a Emerging Technologies for Developing Countries |b 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
250 | |a 1st ed | ||
264 | 1 | |a Cham |b Springer International Publishing AG |c 2023 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (231 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series |v v.503 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Organization -- Contents -- Education in the 4IR Era -- Reinforcement Learning in Education: A Multi-armed Bandit Approach -- 1 Introduction -- 1.1 Recommender Systems -- 1.2 Multi-armed Bandits and Markov Decision Processes -- 2 Methods -- 2.1 MAB Student Intervention Recommendation Framework -- 2.2 Simulation Parameters -- 2.3 MAB Algorithms -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Assessing Institutional Readiness for the Fourth Industrial Revolution: Using Learning Analytics to Improve Student Experiences -- 1 Introduction -- 2 Decision-Making in Higher Education -- 3 Challenges with Decision-Making -- 4 Decision-Making Approaches -- 4.1 Data-Driven Decision-Making -- 4.2 Decision-Support Systems -- 4.3 Learning Analytics -- 5 Theoretical Framework -- 6 Methodology -- 6.1 Participants -- 6.2 Procedure -- 7 Results and Discussion -- 7.1 Personal Beliefs and Perspectives -- 7.2 Institutional Capabilities/Readiness - Systems in Place -- 8 Conclusion, Limitations and Recommendations -- References -- M-learning During COVID-19: A Systematic Literature Review -- 1 Introduction -- 2 Methodology -- 2.1 First Stage. Collecting the Relevant Papers -- 2.2 Second Stage. Screening Using Inclusion and Exclusion Criteria -- 2.3 Third Stage. Data Extraction -- 3 Classification Framework -- 3.1 A Summary of the Selected Papers -- 3.2 Structuring the Findings -- 4 Analysis and Discussion of Findings -- 4.1 Context -- 4.2 Opportunities (M-learning Resources) -- 4.3 Opportunities (Related to Students) -- 4.4 Opportunities (Related to Educators) -- 4.5 Opportunities (Related to Contents of M-learning) -- 4.6 Resources Challenges -- 4.7 Educator Readiness Challenges -- 4.8 Challenges Facing Students -- 4.9 Learning Content Challenges -- 4.10 Origin -- 5 Research Agenda -- 5.1 Context -- 5.2 Opportunities | |
505 | 8 | |a 5.3 Student Challenges -- 5.4 Educator Readiness -- 5.5 Learning Content -- 5.6 Origin -- 6 Conclusions and Implications of the Study -- References -- Opportunities for Driving Efficiencies and Effectiveness -- Archiving 4.0: Dataset Generation and Facial Recognition of DRC Political Figures Using Machine Learning -- 1 Introduction -- 2 Background and Literature -- 2.1 Face Detection and Face Recognition -- 2.2 Transfer Learning -- 2.3 Evaluation Metrics -- 3 Methodology and Data Acquisition -- 3.1 Methodology -- 3.2 Data Collection and Preparation -- 4 Performance Evaluation -- 4.1 Face Detection -- 4.2 Classification -- 4.3 Discussion of Results -- 5 Conclusion -- References -- On the Machine Learning Models to Predict Town-Scale Energy Consumption in Burkina Faso -- 1 Introduction -- 2 Related Work -- 3 Data and Exploratory Analysis -- 3.1 Dataset -- 3.2 Exploratory Analysis -- 4 Modeling Framework -- 5 Results and Discussion -- 6 Conclusion -- References -- Application of Latent Dirichlet Allocation Topic Model in Identifying 4IR Research Trends -- 1 Introduction -- 1.1 An Overview of the Fourth Industrial Revolution -- 1.2 Topic Modeling -- 1.3 Latent Dirichlet Allocation (LDA) -- 1.4 Dynamic Topic Models -- 2 Data and Methods -- 2.1 Data Sources -- 2.2 Text Pre-processing -- 2.3 Bibliometric Analysis -- 2.4 Analysis of the WoS Text Data Using Topic Models -- 2.5 Analyze Tccc-Announce Text Using Longer Phrases -- 3 Results -- 3.1 LDA Topic Models for WoS -- 3.2 Fourth Industrial Revolution (4IR) Trends -- 3.3 Predict Top LDA Topics of Tccc Emails Documents -- 4 Discussion and Conclusion -- 4.1 LDA Topic Models for Decision Support -- 4.2 Further Work -- References -- A Conceptual Model for the Digital Inclusion of SMMEs in the Informal Sector in South Africa - The Use of Blockchain Technology to Access Loans -- 1 Introduction | |
505 | 8 | |a 2 Literature Review -- 2.1 A Brief Overview of the Informal Sector in South Africa -- 2.2 Challenges in the Informal Sector: Lack of Credit Access -- 2.3 Blockchain Technology -- 3 Theoretical Framework -- 3.1 Supply Side of Digital Inclusion -- 3.2 Demand Side of Digital Inclusion -- 4 Conceptual Model -- 5 Conclusion, Limitations and Contribution of Study -- References -- Key 4IR Baseline Architectures -- Multiple Mobile Robotic Formation Control Based on Differential Flatness -- 1 Introduction -- 2 System Description -- 3 Motion Planning and Control -- 4 Simulation and Results -- 5 Conclusion -- References -- A Comparison of Publish-Subscribe and Client-Server Models for Streaming IoT Telemetry Data -- 1 Introduction -- 1.1 WebSocket -- 1.2 MQTT -- 2 Related Works -- 3 Methodology -- 4 Results -- 4.1 Throughput -- 4.2 Round Trip Time (RTT) -- 4.3 System Load -- 5 Conclusion and Further Work -- References -- Fourth Industrial Revolution Research Outputs in Africa: A Bibliometric Review -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 The Fourth Industrial Revolution Research Trends in Africa -- 3.2 VOSviewer Visualization Maps -- 4 Discussion -- 4.1 State of Fourth Industrial Revolution Research in Africa -- 4.2 4IR Trending Technologies and Research Trends in Africa -- 4.3 Research Gaps and Future Research Directions -- 5 Conclusion -- References -- Modelling DDoS Attacks in IoT Networks Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Pre-processing and Labelling -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 3.4 Semi-supervised Learning -- 3.5 Statistical Models -- 3.6 Prediction -- 4 Implementation -- 4.1 Metrics -- 4.2 Supervised Learning -- 4.3 Unsupervised Learning -- 4.4 Semi-supervised Learning -- 4.5 Statistical Models -- 4.6 Prediction -- 5 Conclusion -- References | |
505 | 8 | |a Application of 4IR in Environment and Agriculture Monitoring -- Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System -- 1 Introduction -- 2 Background -- 2.1 Microservices and Containers Management -- 2.2 Container Orchestration -- 3 Proposed Experimental Framework -- 3.1 Cluster Setup -- 3.2 Results -- 4 Conclusion -- References -- Indigenous Knowledge Mobile Based Application that Quantifies Farmers' Season Predictions with the Help of Scientific Knowledge -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 NDVI -- 3.2 NDWI -- 3.3 NDMI -- 3.4 Mobile Application Development -- 3.5 Season Prediction -- 3.6 Certainty Level Computation -- 3.7 Next Season Prediction -- 3.8 SES Model -- 3.9 Downscaling of Predictions -- 4 SES Model Evaluation -- 5 Conclusion -- References -- Weed Identification in Plant Seedlings Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Works -- 3 Materials and Methods -- 3.1 System Architecture -- 3.2 System Methodology -- 3.3 Performance Metrics -- 4 Results and Discussion -- 4.1 Results -- 4.2 Comparative Performance Evaluation -- 4.3 Weed Detection -- 4.4 Discussion -- 5 Conclusions -- References -- Author Index | |
650 | 4 | |a Artificial intelligence | |
700 | 1 | |a Bagula, Antoine |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Masinde, Muthoni |t Emerging Technologies for Developing Countries |d Cham : Springer International Publishing AG,c2023 |z 9783031358821 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035215760 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30620225 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1817704728573771776 |
---|---|
adam_text | |
any_adam_object | |
author | Masinde, Muthoni |
author_facet | Masinde, Muthoni |
author_role | aut |
author_sort | Masinde, Muthoni |
author_variant | m m mm |
building | Verbundindex |
bvnumber | BV049876310 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Organization -- Contents -- Education in the 4IR Era -- Reinforcement Learning in Education: A Multi-armed Bandit Approach -- 1 Introduction -- 1.1 Recommender Systems -- 1.2 Multi-armed Bandits and Markov Decision Processes -- 2 Methods -- 2.1 MAB Student Intervention Recommendation Framework -- 2.2 Simulation Parameters -- 2.3 MAB Algorithms -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Assessing Institutional Readiness for the Fourth Industrial Revolution: Using Learning Analytics to Improve Student Experiences -- 1 Introduction -- 2 Decision-Making in Higher Education -- 3 Challenges with Decision-Making -- 4 Decision-Making Approaches -- 4.1 Data-Driven Decision-Making -- 4.2 Decision-Support Systems -- 4.3 Learning Analytics -- 5 Theoretical Framework -- 6 Methodology -- 6.1 Participants -- 6.2 Procedure -- 7 Results and Discussion -- 7.1 Personal Beliefs and Perspectives -- 7.2 Institutional Capabilities/Readiness - Systems in Place -- 8 Conclusion, Limitations and Recommendations -- References -- M-learning During COVID-19: A Systematic Literature Review -- 1 Introduction -- 2 Methodology -- 2.1 First Stage. Collecting the Relevant Papers -- 2.2 Second Stage. Screening Using Inclusion and Exclusion Criteria -- 2.3 Third Stage. Data Extraction -- 3 Classification Framework -- 3.1 A Summary of the Selected Papers -- 3.2 Structuring the Findings -- 4 Analysis and Discussion of Findings -- 4.1 Context -- 4.2 Opportunities (M-learning Resources) -- 4.3 Opportunities (Related to Students) -- 4.4 Opportunities (Related to Educators) -- 4.5 Opportunities (Related to Contents of M-learning) -- 4.6 Resources Challenges -- 4.7 Educator Readiness Challenges -- 4.8 Challenges Facing Students -- 4.9 Learning Content Challenges -- 4.10 Origin -- 5 Research Agenda -- 5.1 Context -- 5.2 Opportunities 5.3 Student Challenges -- 5.4 Educator Readiness -- 5.5 Learning Content -- 5.6 Origin -- 6 Conclusions and Implications of the Study -- References -- Opportunities for Driving Efficiencies and Effectiveness -- Archiving 4.0: Dataset Generation and Facial Recognition of DRC Political Figures Using Machine Learning -- 1 Introduction -- 2 Background and Literature -- 2.1 Face Detection and Face Recognition -- 2.2 Transfer Learning -- 2.3 Evaluation Metrics -- 3 Methodology and Data Acquisition -- 3.1 Methodology -- 3.2 Data Collection and Preparation -- 4 Performance Evaluation -- 4.1 Face Detection -- 4.2 Classification -- 4.3 Discussion of Results -- 5 Conclusion -- References -- On the Machine Learning Models to Predict Town-Scale Energy Consumption in Burkina Faso -- 1 Introduction -- 2 Related Work -- 3 Data and Exploratory Analysis -- 3.1 Dataset -- 3.2 Exploratory Analysis -- 4 Modeling Framework -- 5 Results and Discussion -- 6 Conclusion -- References -- Application of Latent Dirichlet Allocation Topic Model in Identifying 4IR Research Trends -- 1 Introduction -- 1.1 An Overview of the Fourth Industrial Revolution -- 1.2 Topic Modeling -- 1.3 Latent Dirichlet Allocation (LDA) -- 1.4 Dynamic Topic Models -- 2 Data and Methods -- 2.1 Data Sources -- 2.2 Text Pre-processing -- 2.3 Bibliometric Analysis -- 2.4 Analysis of the WoS Text Data Using Topic Models -- 2.5 Analyze Tccc-Announce Text Using Longer Phrases -- 3 Results -- 3.1 LDA Topic Models for WoS -- 3.2 Fourth Industrial Revolution (4IR) Trends -- 3.3 Predict Top LDA Topics of Tccc Emails Documents -- 4 Discussion and Conclusion -- 4.1 LDA Topic Models for Decision Support -- 4.2 Further Work -- References -- A Conceptual Model for the Digital Inclusion of SMMEs in the Informal Sector in South Africa - The Use of Blockchain Technology to Access Loans -- 1 Introduction 2 Literature Review -- 2.1 A Brief Overview of the Informal Sector in South Africa -- 2.2 Challenges in the Informal Sector: Lack of Credit Access -- 2.3 Blockchain Technology -- 3 Theoretical Framework -- 3.1 Supply Side of Digital Inclusion -- 3.2 Demand Side of Digital Inclusion -- 4 Conceptual Model -- 5 Conclusion, Limitations and Contribution of Study -- References -- Key 4IR Baseline Architectures -- Multiple Mobile Robotic Formation Control Based on Differential Flatness -- 1 Introduction -- 2 System Description -- 3 Motion Planning and Control -- 4 Simulation and Results -- 5 Conclusion -- References -- A Comparison of Publish-Subscribe and Client-Server Models for Streaming IoT Telemetry Data -- 1 Introduction -- 1.1 WebSocket -- 1.2 MQTT -- 2 Related Works -- 3 Methodology -- 4 Results -- 4.1 Throughput -- 4.2 Round Trip Time (RTT) -- 4.3 System Load -- 5 Conclusion and Further Work -- References -- Fourth Industrial Revolution Research Outputs in Africa: A Bibliometric Review -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 The Fourth Industrial Revolution Research Trends in Africa -- 3.2 VOSviewer Visualization Maps -- 4 Discussion -- 4.1 State of Fourth Industrial Revolution Research in Africa -- 4.2 4IR Trending Technologies and Research Trends in Africa -- 4.3 Research Gaps and Future Research Directions -- 5 Conclusion -- References -- Modelling DDoS Attacks in IoT Networks Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Pre-processing and Labelling -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 3.4 Semi-supervised Learning -- 3.5 Statistical Models -- 3.6 Prediction -- 4 Implementation -- 4.1 Metrics -- 4.2 Supervised Learning -- 4.3 Unsupervised Learning -- 4.4 Semi-supervised Learning -- 4.5 Statistical Models -- 4.6 Prediction -- 5 Conclusion -- References Application of 4IR in Environment and Agriculture Monitoring -- Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System -- 1 Introduction -- 2 Background -- 2.1 Microservices and Containers Management -- 2.2 Container Orchestration -- 3 Proposed Experimental Framework -- 3.1 Cluster Setup -- 3.2 Results -- 4 Conclusion -- References -- Indigenous Knowledge Mobile Based Application that Quantifies Farmers' Season Predictions with the Help of Scientific Knowledge -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 NDVI -- 3.2 NDWI -- 3.3 NDMI -- 3.4 Mobile Application Development -- 3.5 Season Prediction -- 3.6 Certainty Level Computation -- 3.7 Next Season Prediction -- 3.8 SES Model -- 3.9 Downscaling of Predictions -- 4 SES Model Evaluation -- 5 Conclusion -- References -- Weed Identification in Plant Seedlings Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Works -- 3 Materials and Methods -- 3.1 System Architecture -- 3.2 System Methodology -- 3.3 Performance Metrics -- 4 Results and Discussion -- 4.1 Results -- 4.2 Comparative Performance Evaluation -- 4.3 Weed Detection -- 4.4 Discussion -- 5 Conclusions -- References -- Author Index |
ctrlnum | (ZDB-30-PQE)EBC30620225 (ZDB-30-PAD)EBC30620225 (ZDB-89-EBL)EBL30620225 (OCoLC)1394922511 (DE-599)BVBBV049876310 |
dewey-full | 338.064091724 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 338 - Production |
dewey-raw | 338.064091724 |
dewey-search | 338.064091724 |
dewey-sort | 3338.064091724 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV049876310</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031358838</subfield><subfield code="9">978-3-031-35883-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC30620225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC30620225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL30620225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1394922511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049876310</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">338.064091724</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Masinde, Muthoni</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Emerging Technologies for Developing Countries</subfield><subfield code="b">5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (231 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series</subfield><subfield code="v">v.503</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Organization -- Contents -- Education in the 4IR Era -- Reinforcement Learning in Education: A Multi-armed Bandit Approach -- 1 Introduction -- 1.1 Recommender Systems -- 1.2 Multi-armed Bandits and Markov Decision Processes -- 2 Methods -- 2.1 MAB Student Intervention Recommendation Framework -- 2.2 Simulation Parameters -- 2.3 MAB Algorithms -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Assessing Institutional Readiness for the Fourth Industrial Revolution: Using Learning Analytics to Improve Student Experiences -- 1 Introduction -- 2 Decision-Making in Higher Education -- 3 Challenges with Decision-Making -- 4 Decision-Making Approaches -- 4.1 Data-Driven Decision-Making -- 4.2 Decision-Support Systems -- 4.3 Learning Analytics -- 5 Theoretical Framework -- 6 Methodology -- 6.1 Participants -- 6.2 Procedure -- 7 Results and Discussion -- 7.1 Personal Beliefs and Perspectives -- 7.2 Institutional Capabilities/Readiness - Systems in Place -- 8 Conclusion, Limitations and Recommendations -- References -- M-learning During COVID-19: A Systematic Literature Review -- 1 Introduction -- 2 Methodology -- 2.1 First Stage. Collecting the Relevant Papers -- 2.2 Second Stage. Screening Using Inclusion and Exclusion Criteria -- 2.3 Third Stage. Data Extraction -- 3 Classification Framework -- 3.1 A Summary of the Selected Papers -- 3.2 Structuring the Findings -- 4 Analysis and Discussion of Findings -- 4.1 Context -- 4.2 Opportunities (M-learning Resources) -- 4.3 Opportunities (Related to Students) -- 4.4 Opportunities (Related to Educators) -- 4.5 Opportunities (Related to Contents of M-learning) -- 4.6 Resources Challenges -- 4.7 Educator Readiness Challenges -- 4.8 Challenges Facing Students -- 4.9 Learning Content Challenges -- 4.10 Origin -- 5 Research Agenda -- 5.1 Context -- 5.2 Opportunities</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Student Challenges -- 5.4 Educator Readiness -- 5.5 Learning Content -- 5.6 Origin -- 6 Conclusions and Implications of the Study -- References -- Opportunities for Driving Efficiencies and Effectiveness -- Archiving 4.0: Dataset Generation and Facial Recognition of DRC Political Figures Using Machine Learning -- 1 Introduction -- 2 Background and Literature -- 2.1 Face Detection and Face Recognition -- 2.2 Transfer Learning -- 2.3 Evaluation Metrics -- 3 Methodology and Data Acquisition -- 3.1 Methodology -- 3.2 Data Collection and Preparation -- 4 Performance Evaluation -- 4.1 Face Detection -- 4.2 Classification -- 4.3 Discussion of Results -- 5 Conclusion -- References -- On the Machine Learning Models to Predict Town-Scale Energy Consumption in Burkina Faso -- 1 Introduction -- 2 Related Work -- 3 Data and Exploratory Analysis -- 3.1 Dataset -- 3.2 Exploratory Analysis -- 4 Modeling Framework -- 5 Results and Discussion -- 6 Conclusion -- References -- Application of Latent Dirichlet Allocation Topic Model in Identifying 4IR Research Trends -- 1 Introduction -- 1.1 An Overview of the Fourth Industrial Revolution -- 1.2 Topic Modeling -- 1.3 Latent Dirichlet Allocation (LDA) -- 1.4 Dynamic Topic Models -- 2 Data and Methods -- 2.1 Data Sources -- 2.2 Text Pre-processing -- 2.3 Bibliometric Analysis -- 2.4 Analysis of the WoS Text Data Using Topic Models -- 2.5 Analyze Tccc-Announce Text Using Longer Phrases -- 3 Results -- 3.1 LDA Topic Models for WoS -- 3.2 Fourth Industrial Revolution (4IR) Trends -- 3.3 Predict Top LDA Topics of Tccc Emails Documents -- 4 Discussion and Conclusion -- 4.1 LDA Topic Models for Decision Support -- 4.2 Further Work -- References -- A Conceptual Model for the Digital Inclusion of SMMEs in the Informal Sector in South Africa - The Use of Blockchain Technology to Access Loans -- 1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 Literature Review -- 2.1 A Brief Overview of the Informal Sector in South Africa -- 2.2 Challenges in the Informal Sector: Lack of Credit Access -- 2.3 Blockchain Technology -- 3 Theoretical Framework -- 3.1 Supply Side of Digital Inclusion -- 3.2 Demand Side of Digital Inclusion -- 4 Conceptual Model -- 5 Conclusion, Limitations and Contribution of Study -- References -- Key 4IR Baseline Architectures -- Multiple Mobile Robotic Formation Control Based on Differential Flatness -- 1 Introduction -- 2 System Description -- 3 Motion Planning and Control -- 4 Simulation and Results -- 5 Conclusion -- References -- A Comparison of Publish-Subscribe and Client-Server Models for Streaming IoT Telemetry Data -- 1 Introduction -- 1.1 WebSocket -- 1.2 MQTT -- 2 Related Works -- 3 Methodology -- 4 Results -- 4.1 Throughput -- 4.2 Round Trip Time (RTT) -- 4.3 System Load -- 5 Conclusion and Further Work -- References -- Fourth Industrial Revolution Research Outputs in Africa: A Bibliometric Review -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 The Fourth Industrial Revolution Research Trends in Africa -- 3.2 VOSviewer Visualization Maps -- 4 Discussion -- 4.1 State of Fourth Industrial Revolution Research in Africa -- 4.2 4IR Trending Technologies and Research Trends in Africa -- 4.3 Research Gaps and Future Research Directions -- 5 Conclusion -- References -- Modelling DDoS Attacks in IoT Networks Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Pre-processing and Labelling -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 3.4 Semi-supervised Learning -- 3.5 Statistical Models -- 3.6 Prediction -- 4 Implementation -- 4.1 Metrics -- 4.2 Supervised Learning -- 4.3 Unsupervised Learning -- 4.4 Semi-supervised Learning -- 4.5 Statistical Models -- 4.6 Prediction -- 5 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Application of 4IR in Environment and Agriculture Monitoring -- Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System -- 1 Introduction -- 2 Background -- 2.1 Microservices and Containers Management -- 2.2 Container Orchestration -- 3 Proposed Experimental Framework -- 3.1 Cluster Setup -- 3.2 Results -- 4 Conclusion -- References -- Indigenous Knowledge Mobile Based Application that Quantifies Farmers' Season Predictions with the Help of Scientific Knowledge -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 NDVI -- 3.2 NDWI -- 3.3 NDMI -- 3.4 Mobile Application Development -- 3.5 Season Prediction -- 3.6 Certainty Level Computation -- 3.7 Next Season Prediction -- 3.8 SES Model -- 3.9 Downscaling of Predictions -- 4 SES Model Evaluation -- 5 Conclusion -- References -- Weed Identification in Plant Seedlings Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Works -- 3 Materials and Methods -- 3.1 System Architecture -- 3.2 System Methodology -- 3.3 Performance Metrics -- 4 Results and Discussion -- 4.1 Results -- 4.2 Comparative Performance Evaluation -- 4.3 Weed Detection -- 4.4 Discussion -- 5 Conclusions -- References -- Author Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bagula, Antoine</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Masinde, Muthoni</subfield><subfield code="t">Emerging Technologies for Developing Countries</subfield><subfield code="d">Cham : Springer International Publishing AG,c2023</subfield><subfield code="z">9783031358821</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035215760</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30620225</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049876310 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T15:18:34Z |
institution | BVB |
isbn | 9783031358838 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035215760 |
oclc_num | 1394922511 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (231 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series |
spelling | Masinde, Muthoni Verfasser aut Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings 1st ed Cham Springer International Publishing AG 2023 ©2023 1 Online-Ressource (231 Seiten) txt rdacontent c rdamedia cr rdacarrier Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series v.503 Description based on publisher supplied metadata and other sources Intro -- Preface -- Organization -- Contents -- Education in the 4IR Era -- Reinforcement Learning in Education: A Multi-armed Bandit Approach -- 1 Introduction -- 1.1 Recommender Systems -- 1.2 Multi-armed Bandits and Markov Decision Processes -- 2 Methods -- 2.1 MAB Student Intervention Recommendation Framework -- 2.2 Simulation Parameters -- 2.3 MAB Algorithms -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Assessing Institutional Readiness for the Fourth Industrial Revolution: Using Learning Analytics to Improve Student Experiences -- 1 Introduction -- 2 Decision-Making in Higher Education -- 3 Challenges with Decision-Making -- 4 Decision-Making Approaches -- 4.1 Data-Driven Decision-Making -- 4.2 Decision-Support Systems -- 4.3 Learning Analytics -- 5 Theoretical Framework -- 6 Methodology -- 6.1 Participants -- 6.2 Procedure -- 7 Results and Discussion -- 7.1 Personal Beliefs and Perspectives -- 7.2 Institutional Capabilities/Readiness - Systems in Place -- 8 Conclusion, Limitations and Recommendations -- References -- M-learning During COVID-19: A Systematic Literature Review -- 1 Introduction -- 2 Methodology -- 2.1 First Stage. Collecting the Relevant Papers -- 2.2 Second Stage. Screening Using Inclusion and Exclusion Criteria -- 2.3 Third Stage. Data Extraction -- 3 Classification Framework -- 3.1 A Summary of the Selected Papers -- 3.2 Structuring the Findings -- 4 Analysis and Discussion of Findings -- 4.1 Context -- 4.2 Opportunities (M-learning Resources) -- 4.3 Opportunities (Related to Students) -- 4.4 Opportunities (Related to Educators) -- 4.5 Opportunities (Related to Contents of M-learning) -- 4.6 Resources Challenges -- 4.7 Educator Readiness Challenges -- 4.8 Challenges Facing Students -- 4.9 Learning Content Challenges -- 4.10 Origin -- 5 Research Agenda -- 5.1 Context -- 5.2 Opportunities 5.3 Student Challenges -- 5.4 Educator Readiness -- 5.5 Learning Content -- 5.6 Origin -- 6 Conclusions and Implications of the Study -- References -- Opportunities for Driving Efficiencies and Effectiveness -- Archiving 4.0: Dataset Generation and Facial Recognition of DRC Political Figures Using Machine Learning -- 1 Introduction -- 2 Background and Literature -- 2.1 Face Detection and Face Recognition -- 2.2 Transfer Learning -- 2.3 Evaluation Metrics -- 3 Methodology and Data Acquisition -- 3.1 Methodology -- 3.2 Data Collection and Preparation -- 4 Performance Evaluation -- 4.1 Face Detection -- 4.2 Classification -- 4.3 Discussion of Results -- 5 Conclusion -- References -- On the Machine Learning Models to Predict Town-Scale Energy Consumption in Burkina Faso -- 1 Introduction -- 2 Related Work -- 3 Data and Exploratory Analysis -- 3.1 Dataset -- 3.2 Exploratory Analysis -- 4 Modeling Framework -- 5 Results and Discussion -- 6 Conclusion -- References -- Application of Latent Dirichlet Allocation Topic Model in Identifying 4IR Research Trends -- 1 Introduction -- 1.1 An Overview of the Fourth Industrial Revolution -- 1.2 Topic Modeling -- 1.3 Latent Dirichlet Allocation (LDA) -- 1.4 Dynamic Topic Models -- 2 Data and Methods -- 2.1 Data Sources -- 2.2 Text Pre-processing -- 2.3 Bibliometric Analysis -- 2.4 Analysis of the WoS Text Data Using Topic Models -- 2.5 Analyze Tccc-Announce Text Using Longer Phrases -- 3 Results -- 3.1 LDA Topic Models for WoS -- 3.2 Fourth Industrial Revolution (4IR) Trends -- 3.3 Predict Top LDA Topics of Tccc Emails Documents -- 4 Discussion and Conclusion -- 4.1 LDA Topic Models for Decision Support -- 4.2 Further Work -- References -- A Conceptual Model for the Digital Inclusion of SMMEs in the Informal Sector in South Africa - The Use of Blockchain Technology to Access Loans -- 1 Introduction 2 Literature Review -- 2.1 A Brief Overview of the Informal Sector in South Africa -- 2.2 Challenges in the Informal Sector: Lack of Credit Access -- 2.3 Blockchain Technology -- 3 Theoretical Framework -- 3.1 Supply Side of Digital Inclusion -- 3.2 Demand Side of Digital Inclusion -- 4 Conceptual Model -- 5 Conclusion, Limitations and Contribution of Study -- References -- Key 4IR Baseline Architectures -- Multiple Mobile Robotic Formation Control Based on Differential Flatness -- 1 Introduction -- 2 System Description -- 3 Motion Planning and Control -- 4 Simulation and Results -- 5 Conclusion -- References -- A Comparison of Publish-Subscribe and Client-Server Models for Streaming IoT Telemetry Data -- 1 Introduction -- 1.1 WebSocket -- 1.2 MQTT -- 2 Related Works -- 3 Methodology -- 4 Results -- 4.1 Throughput -- 4.2 Round Trip Time (RTT) -- 4.3 System Load -- 5 Conclusion and Further Work -- References -- Fourth Industrial Revolution Research Outputs in Africa: A Bibliometric Review -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 The Fourth Industrial Revolution Research Trends in Africa -- 3.2 VOSviewer Visualization Maps -- 4 Discussion -- 4.1 State of Fourth Industrial Revolution Research in Africa -- 4.2 4IR Trending Technologies and Research Trends in Africa -- 4.3 Research Gaps and Future Research Directions -- 5 Conclusion -- References -- Modelling DDoS Attacks in IoT Networks Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Pre-processing and Labelling -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 3.4 Semi-supervised Learning -- 3.5 Statistical Models -- 3.6 Prediction -- 4 Implementation -- 4.1 Metrics -- 4.2 Supervised Learning -- 4.3 Unsupervised Learning -- 4.4 Semi-supervised Learning -- 4.5 Statistical Models -- 4.6 Prediction -- 5 Conclusion -- References Application of 4IR in Environment and Agriculture Monitoring -- Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System -- 1 Introduction -- 2 Background -- 2.1 Microservices and Containers Management -- 2.2 Container Orchestration -- 3 Proposed Experimental Framework -- 3.1 Cluster Setup -- 3.2 Results -- 4 Conclusion -- References -- Indigenous Knowledge Mobile Based Application that Quantifies Farmers' Season Predictions with the Help of Scientific Knowledge -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 NDVI -- 3.2 NDWI -- 3.3 NDMI -- 3.4 Mobile Application Development -- 3.5 Season Prediction -- 3.6 Certainty Level Computation -- 3.7 Next Season Prediction -- 3.8 SES Model -- 3.9 Downscaling of Predictions -- 4 SES Model Evaluation -- 5 Conclusion -- References -- Weed Identification in Plant Seedlings Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Works -- 3 Materials and Methods -- 3.1 System Architecture -- 3.2 System Methodology -- 3.3 Performance Metrics -- 4 Results and Discussion -- 4.1 Results -- 4.2 Comparative Performance Evaluation -- 4.3 Weed Detection -- 4.4 Discussion -- 5 Conclusions -- References -- Author Index Artificial intelligence Bagula, Antoine Sonstige oth Erscheint auch als Druck-Ausgabe Masinde, Muthoni Emerging Technologies for Developing Countries Cham : Springer International Publishing AG,c2023 9783031358821 |
spellingShingle | Masinde, Muthoni Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings Intro -- Preface -- Organization -- Contents -- Education in the 4IR Era -- Reinforcement Learning in Education: A Multi-armed Bandit Approach -- 1 Introduction -- 1.1 Recommender Systems -- 1.2 Multi-armed Bandits and Markov Decision Processes -- 2 Methods -- 2.1 MAB Student Intervention Recommendation Framework -- 2.2 Simulation Parameters -- 2.3 MAB Algorithms -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Assessing Institutional Readiness for the Fourth Industrial Revolution: Using Learning Analytics to Improve Student Experiences -- 1 Introduction -- 2 Decision-Making in Higher Education -- 3 Challenges with Decision-Making -- 4 Decision-Making Approaches -- 4.1 Data-Driven Decision-Making -- 4.2 Decision-Support Systems -- 4.3 Learning Analytics -- 5 Theoretical Framework -- 6 Methodology -- 6.1 Participants -- 6.2 Procedure -- 7 Results and Discussion -- 7.1 Personal Beliefs and Perspectives -- 7.2 Institutional Capabilities/Readiness - Systems in Place -- 8 Conclusion, Limitations and Recommendations -- References -- M-learning During COVID-19: A Systematic Literature Review -- 1 Introduction -- 2 Methodology -- 2.1 First Stage. Collecting the Relevant Papers -- 2.2 Second Stage. Screening Using Inclusion and Exclusion Criteria -- 2.3 Third Stage. Data Extraction -- 3 Classification Framework -- 3.1 A Summary of the Selected Papers -- 3.2 Structuring the Findings -- 4 Analysis and Discussion of Findings -- 4.1 Context -- 4.2 Opportunities (M-learning Resources) -- 4.3 Opportunities (Related to Students) -- 4.4 Opportunities (Related to Educators) -- 4.5 Opportunities (Related to Contents of M-learning) -- 4.6 Resources Challenges -- 4.7 Educator Readiness Challenges -- 4.8 Challenges Facing Students -- 4.9 Learning Content Challenges -- 4.10 Origin -- 5 Research Agenda -- 5.1 Context -- 5.2 Opportunities 5.3 Student Challenges -- 5.4 Educator Readiness -- 5.5 Learning Content -- 5.6 Origin -- 6 Conclusions and Implications of the Study -- References -- Opportunities for Driving Efficiencies and Effectiveness -- Archiving 4.0: Dataset Generation and Facial Recognition of DRC Political Figures Using Machine Learning -- 1 Introduction -- 2 Background and Literature -- 2.1 Face Detection and Face Recognition -- 2.2 Transfer Learning -- 2.3 Evaluation Metrics -- 3 Methodology and Data Acquisition -- 3.1 Methodology -- 3.2 Data Collection and Preparation -- 4 Performance Evaluation -- 4.1 Face Detection -- 4.2 Classification -- 4.3 Discussion of Results -- 5 Conclusion -- References -- On the Machine Learning Models to Predict Town-Scale Energy Consumption in Burkina Faso -- 1 Introduction -- 2 Related Work -- 3 Data and Exploratory Analysis -- 3.1 Dataset -- 3.2 Exploratory Analysis -- 4 Modeling Framework -- 5 Results and Discussion -- 6 Conclusion -- References -- Application of Latent Dirichlet Allocation Topic Model in Identifying 4IR Research Trends -- 1 Introduction -- 1.1 An Overview of the Fourth Industrial Revolution -- 1.2 Topic Modeling -- 1.3 Latent Dirichlet Allocation (LDA) -- 1.4 Dynamic Topic Models -- 2 Data and Methods -- 2.1 Data Sources -- 2.2 Text Pre-processing -- 2.3 Bibliometric Analysis -- 2.4 Analysis of the WoS Text Data Using Topic Models -- 2.5 Analyze Tccc-Announce Text Using Longer Phrases -- 3 Results -- 3.1 LDA Topic Models for WoS -- 3.2 Fourth Industrial Revolution (4IR) Trends -- 3.3 Predict Top LDA Topics of Tccc Emails Documents -- 4 Discussion and Conclusion -- 4.1 LDA Topic Models for Decision Support -- 4.2 Further Work -- References -- A Conceptual Model for the Digital Inclusion of SMMEs in the Informal Sector in South Africa - The Use of Blockchain Technology to Access Loans -- 1 Introduction 2 Literature Review -- 2.1 A Brief Overview of the Informal Sector in South Africa -- 2.2 Challenges in the Informal Sector: Lack of Credit Access -- 2.3 Blockchain Technology -- 3 Theoretical Framework -- 3.1 Supply Side of Digital Inclusion -- 3.2 Demand Side of Digital Inclusion -- 4 Conceptual Model -- 5 Conclusion, Limitations and Contribution of Study -- References -- Key 4IR Baseline Architectures -- Multiple Mobile Robotic Formation Control Based on Differential Flatness -- 1 Introduction -- 2 System Description -- 3 Motion Planning and Control -- 4 Simulation and Results -- 5 Conclusion -- References -- A Comparison of Publish-Subscribe and Client-Server Models for Streaming IoT Telemetry Data -- 1 Introduction -- 1.1 WebSocket -- 1.2 MQTT -- 2 Related Works -- 3 Methodology -- 4 Results -- 4.1 Throughput -- 4.2 Round Trip Time (RTT) -- 4.3 System Load -- 5 Conclusion and Further Work -- References -- Fourth Industrial Revolution Research Outputs in Africa: A Bibliometric Review -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 The Fourth Industrial Revolution Research Trends in Africa -- 3.2 VOSviewer Visualization Maps -- 4 Discussion -- 4.1 State of Fourth Industrial Revolution Research in Africa -- 4.2 4IR Trending Technologies and Research Trends in Africa -- 4.3 Research Gaps and Future Research Directions -- 5 Conclusion -- References -- Modelling DDoS Attacks in IoT Networks Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Pre-processing and Labelling -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 3.4 Semi-supervised Learning -- 3.5 Statistical Models -- 3.6 Prediction -- 4 Implementation -- 4.1 Metrics -- 4.2 Supervised Learning -- 4.3 Unsupervised Learning -- 4.4 Semi-supervised Learning -- 4.5 Statistical Models -- 4.6 Prediction -- 5 Conclusion -- References Application of 4IR in Environment and Agriculture Monitoring -- Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System -- 1 Introduction -- 2 Background -- 2.1 Microservices and Containers Management -- 2.2 Container Orchestration -- 3 Proposed Experimental Framework -- 3.1 Cluster Setup -- 3.2 Results -- 4 Conclusion -- References -- Indigenous Knowledge Mobile Based Application that Quantifies Farmers' Season Predictions with the Help of Scientific Knowledge -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 NDVI -- 3.2 NDWI -- 3.3 NDMI -- 3.4 Mobile Application Development -- 3.5 Season Prediction -- 3.6 Certainty Level Computation -- 3.7 Next Season Prediction -- 3.8 SES Model -- 3.9 Downscaling of Predictions -- 4 SES Model Evaluation -- 5 Conclusion -- References -- Weed Identification in Plant Seedlings Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Works -- 3 Materials and Methods -- 3.1 System Architecture -- 3.2 System Methodology -- 3.3 Performance Metrics -- 4 Results and Discussion -- 4.1 Results -- 4.2 Comparative Performance Evaluation -- 4.3 Weed Detection -- 4.4 Discussion -- 5 Conclusions -- References -- Author Index Artificial intelligence |
title | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_auth | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_exact_search | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_full | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_fullStr | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_full_unstemmed | Emerging Technologies for Developing Countries 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
title_short | Emerging Technologies for Developing Countries |
title_sort | emerging technologies for developing countries 5th eai international conference africatek 2022 bloemfontein south africa december 5 7 2022 proceedings |
title_sub | 5th EAI International Conference, AFRICATEK 2022, Bloemfontein, South Africa, December 5-7, 2022, Proceedings |
topic | Artificial intelligence |
topic_facet | Artificial intelligence |
work_keys_str_mv | AT masindemuthoni emergingtechnologiesfordevelopingcountries5theaiinternationalconferenceafricatek2022bloemfonteinsouthafricadecember572022proceedings AT bagulaantoine emergingtechnologiesfordevelopingcountries5theaiinternationalconferenceafricatek2022bloemfonteinsouthafricadecember572022proceedings |