Extending Power BI with Python and R: Perform Advanced Analysis Using the Power of Analytical Languages
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2024
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (815 Seiten) |
ISBN: | 9781837635863 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049875096 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781837635863 |9 978-1-83763-586-3 | ||
035 | |a (ZDB-30-PQE)EBC31233987 | ||
035 | |a (ZDB-30-PAD)EBC31233987 | ||
035 | |a (ZDB-89-EBL)EBL31233987 | ||
035 | |a (OCoLC)1428439710 | ||
035 | |a (DE-599)BVBBV049875096 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 001.42260285 | |
100 | 1 | |a Zavarella, Luca |e Verfasser |4 aut | |
245 | 1 | 0 | |a Extending Power BI with Python and R |b Perform Advanced Analysis Using the Power of Analytical Languages |
250 | |a 2nd ed | ||
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2024 | |
264 | 4 | |c ©2024 | |
300 | |a 1 Online-Ressource (815 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Where and How to Use R and Python Scripts in Power BI -- Technical requirements -- Injecting R or Python scripts into Power BI -- Data loading -- Data transformation -- Data visualization -- Using R and Python to interact with your data -- Python and R compatibility across Power BI products -- Summary -- Test your knowledge -- Chapter 2: Configuring R with Power BI -- Technical requirements -- The available R engines -- The CRAN R distribution -- The Microsoft R Open distribution and MRAN -- Multi-threading in MRO -- Choosing an R engine to install -- The R engines used by Power BI -- Installing the suggested R engines -- The R engine for data transformation -- The R engine for R script visuals on the Power BI service -- What to do when the Power BI service upgrades the R engine -- Installing an IDE for R development -- Installing RStudio -- Installing RTools -- Linking Intel's MKL to R -- Configuring Power BI Desktop to work with R -- Debugging an R script visual -- Configuring the Power BI service to work with R -- Installing the on-premises data gateway in personal mode -- Sharing reports that use R scripts in the Power BI service -- R script visuals limitations -- Summary -- Test your knowledge -- Chapter 3: Configuring Python with Power BI -- Technical requirements -- The available Python engines -- Choosing a Python engine to install -- The Python engines used by Power BI -- Installing the suggested Python engines -- The Python engine for data transformation -- Creating an environment for data transformations using pip -- Creating an optimized environment for data transformations using conda -- Creating an environment for Python script visuals on the Power BI service -- What to do when the Power BI service upgrades the Python engine | |
505 | 8 | |a Installing an IDE for Python development -- Configuring Python with RStudio -- Configuring Python with Visual Studio Code -- Working with the Python Interactive window in Visual Studio Code -- Configuring Power BI Desktop to work with Python -- Configuring the Power BI service to work with Python -- Sharing reports that use Python scripts in the Power BI service -- Limitations of Python visuals -- Summary -- Test your knowledge -- Chapter 4: Solving Common Issues When Using Python and R in Power BI -- Technical requirements -- Avoiding the ADO.NET error when running a Python script in Power BI -- The real cause of the problem -- A practical solution to the problem -- Avoiding the Formula.Firewall error -- Incompatible privacy levels -- Indirect access to a data source -- The easy way -- Combining queries and/or transformations -- Encapsulating queries into functions -- Using multiple datasets in Python and R script steps -- Applying a full join with Merge -- Using arguments of the Python.Execute function -- Dealing with dates/times in Python and R script steps -- Summary -- Test your knowledge -- Chapter 5: Importing Unhandled Data Objects -- Technical requirements -- Importing RDS files in R -- A brief introduction to Tidyverse -- Creating a serialized R object -- Configuring the environment and installing Tidyverse -- Creating the RDS files -- Using an RDS file in Power BI -- Importing an RDS file into the Power Query Editor -- Importing an RDS file in an R script visual -- Importing PKL files in Python -- A very short introduction to the PyData world -- Creating a serialized Python object -- Configuring the environment and installing the PyData packages -- Creating the PKL files -- Using a PKL file in Power BI -- Importing a PKL file into the Power Query Editor -- Importing a PKL file in a Python script visual -- Summary -- References | |
505 | 8 | |a Test your knowledge -- Chapter 6: Using Regular Expressions in Power BI -- Technical requirements -- A brief introduction to regexes -- The basics of regexes -- Literal characters -- Special characters in regex -- The and anchors -- OR operators -- Negated character classes -- Shorthand character classes -- Quantifiers -- The dot -- Greedy and lazy matches -- Checking the validity of email addresses -- Checking the validity of dates -- Validating data using regex in Power BI -- Using regex in Power BI to validate emails with Python -- Using regex in Power BI to validate emails with R -- Using regex in Power BI to validate dates with Python -- Using regex in Power BI to validate dates with R -- Loading complex log files using regex in Power BI -- Apache access logs -- Importing Apache access logs in Power BI with Python -- Importing Apache access logs in Power BI with R -- Extracting values from text using regex in Power BI -- One regex to rule them all -- Using regex in Power BI to extract values with Python -- Using regex in Power BI to extract values with R -- Summary -- References -- Test your knowledge -- Chapter 7: Anonymizing and Pseudonymizing Your Data in Power BI -- Technical requirements -- De-identifying data -- De-identification techniques -- Information removal -- Data masking -- Data swapping -- Generalization -- Data perturbation -- Tokenization -- Hashing -- Encryption -- Understanding pseudonymization -- What is anonymization? -- Anonymizing data in Power BI -- Anonymizing data using Python -- Anonymizing data using R -- Pseudonymizing data in Power BI -- Pseudonymizing data using Python -- Pseudonymizing data using R -- Summary -- References -- Test your knowledge -- Chapter 8: Logging Data from Power BI to External Sources -- Technical requirements -- Logging to CSV files -- Logging to CSV files with Python | |
505 | 8 | |a Using the pandas module -- Logging emails to CSV files in Power BI with Python -- Logging to CSV files with R -- Using Tidyverse functions -- Logging dates to CSV files in Power BI with R -- Logging to Excel files -- Logging to Excel files with Python -- Using the pandas module -- Logging emails and dates to Excel files in Power BI with Python -- Logging to Excel files with R -- Using the readxl and openxlsx packages -- Logging emails and dates to Excel in Power BI with R -- Logging to (Azure) SQL Server -- Installing SQL Server Express -- Creating an Azure SQL Database -- Logging to an (Azure) SQL server with Python -- Using the pyodbc module -- Logging emails and dates to an Azure SQL Database in Power BI with Python -- Logging to an (Azure) SQL Server with R -- Using the DBI and odbc packages -- Logging emails and dates to an Azure SQL Database in Power BI with R -- Managing credentials in the code -- Creating environment variables -- Using environment variables in Python -- Using environment variables in R -- Summary -- References -- Test your knowledge -- Chapter 9: Loading Large Datasets Beyond the Available RAM in Power BI -- Technical requirements -- A typical analytic scenario using large datasets -- Importing large datasets with Python -- Installing Dask on your laptop -- Creating a Dask DataFrame -- Extracting information from a Dask DataFrame -- Importing a large dataset in Power BI with Python -- Importing large datasets with R -- Introducing Apache Arrow -- Installing arrow on your laptop -- Creating and extracting information from an Arrow Dataset object -- Importing a large dataset in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 10: Boosting Data Loading Speed in Power BI with Parquet Format -- Technical requirements -- From CSV to the Parquet file format | |
505 | 8 | |a Limitations of using Parquet files natively in Power BI -- Using Parquet files with Python -- Analyzing Parquet data with Dask -- Analyzing Parquet data with PyArrow -- Performance differences between Dask and PyArrow -- Using Parquet files with R -- Analyzing Parquet data with Arrow for R -- Using the Parquet format to speed up a Power BI report -- Transforming historical data in Parquet -- Appending new data to and analyzing the Parquet dataset -- Analyzing Parquet data in Power BI with Python -- Analyzing Parquet data in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 11: Calling External APIs to EnrichYour Data -- Technical requirements -- What is a web service? -- Registering for Bing Maps web services -- Geocoding addresses using Python -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the Geocoder library in parallel -- Geocoding addresses using R -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the tidygeocoder package in parallel -- Accessing web services using Power BI -- Geocoding addresses in Power BI with Python -- Geocoding addresses in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 12: Calculating Columns Using Complex Algorithms: Distances -- Technical requirements -- What is a distance? -- The distance between two geographic locations -- Some theory first -- Spherical trigonometry -- The law of Cosines distance -- The law of Haversines distance -- Vincenty's distance -- What kind of distance to use and when -- Implementing distances using Python -- Calculating distances with Python -- Calculating distances in Power BI with Python -- Implementing distances using R -- Calculating distances with R -- Calculating distances in Power BI with R -- The distance between two strings -- Some theory first | |
505 | 8 | |a The Hamming distance | |
650 | 4 | |a Business intelligence-Computer programs | |
650 | 4 | |a Data mining-Computer programs | |
650 | 4 | |a Information visualization-Computer programs | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Talwar, Rajat |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Zavarella, Luca |t Extending Power BI with Python and R |d Birmingham : Packt Publishing, Limited,c2024 |z 9781837639533 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035214554 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31233987 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1810600640603226112 |
---|---|
adam_text | |
any_adam_object | |
author | Zavarella, Luca |
author_facet | Zavarella, Luca |
author_role | aut |
author_sort | Zavarella, Luca |
author_variant | l z lz |
building | Verbundindex |
bvnumber | BV049875096 |
collection | ZDB-30-PQE |
contents | Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Where and How to Use R and Python Scripts in Power BI -- Technical requirements -- Injecting R or Python scripts into Power BI -- Data loading -- Data transformation -- Data visualization -- Using R and Python to interact with your data -- Python and R compatibility across Power BI products -- Summary -- Test your knowledge -- Chapter 2: Configuring R with Power BI -- Technical requirements -- The available R engines -- The CRAN R distribution -- The Microsoft R Open distribution and MRAN -- Multi-threading in MRO -- Choosing an R engine to install -- The R engines used by Power BI -- Installing the suggested R engines -- The R engine for data transformation -- The R engine for R script visuals on the Power BI service -- What to do when the Power BI service upgrades the R engine -- Installing an IDE for R development -- Installing RStudio -- Installing RTools -- Linking Intel's MKL to R -- Configuring Power BI Desktop to work with R -- Debugging an R script visual -- Configuring the Power BI service to work with R -- Installing the on-premises data gateway in personal mode -- Sharing reports that use R scripts in the Power BI service -- R script visuals limitations -- Summary -- Test your knowledge -- Chapter 3: Configuring Python with Power BI -- Technical requirements -- The available Python engines -- Choosing a Python engine to install -- The Python engines used by Power BI -- Installing the suggested Python engines -- The Python engine for data transformation -- Creating an environment for data transformations using pip -- Creating an optimized environment for data transformations using conda -- Creating an environment for Python script visuals on the Power BI service -- What to do when the Power BI service upgrades the Python engine Installing an IDE for Python development -- Configuring Python with RStudio -- Configuring Python with Visual Studio Code -- Working with the Python Interactive window in Visual Studio Code -- Configuring Power BI Desktop to work with Python -- Configuring the Power BI service to work with Python -- Sharing reports that use Python scripts in the Power BI service -- Limitations of Python visuals -- Summary -- Test your knowledge -- Chapter 4: Solving Common Issues When Using Python and R in Power BI -- Technical requirements -- Avoiding the ADO.NET error when running a Python script in Power BI -- The real cause of the problem -- A practical solution to the problem -- Avoiding the Formula.Firewall error -- Incompatible privacy levels -- Indirect access to a data source -- The easy way -- Combining queries and/or transformations -- Encapsulating queries into functions -- Using multiple datasets in Python and R script steps -- Applying a full join with Merge -- Using arguments of the Python.Execute function -- Dealing with dates/times in Python and R script steps -- Summary -- Test your knowledge -- Chapter 5: Importing Unhandled Data Objects -- Technical requirements -- Importing RDS files in R -- A brief introduction to Tidyverse -- Creating a serialized R object -- Configuring the environment and installing Tidyverse -- Creating the RDS files -- Using an RDS file in Power BI -- Importing an RDS file into the Power Query Editor -- Importing an RDS file in an R script visual -- Importing PKL files in Python -- A very short introduction to the PyData world -- Creating a serialized Python object -- Configuring the environment and installing the PyData packages -- Creating the PKL files -- Using a PKL file in Power BI -- Importing a PKL file into the Power Query Editor -- Importing a PKL file in a Python script visual -- Summary -- References Test your knowledge -- Chapter 6: Using Regular Expressions in Power BI -- Technical requirements -- A brief introduction to regexes -- The basics of regexes -- Literal characters -- Special characters in regex -- The and anchors -- OR operators -- Negated character classes -- Shorthand character classes -- Quantifiers -- The dot -- Greedy and lazy matches -- Checking the validity of email addresses -- Checking the validity of dates -- Validating data using regex in Power BI -- Using regex in Power BI to validate emails with Python -- Using regex in Power BI to validate emails with R -- Using regex in Power BI to validate dates with Python -- Using regex in Power BI to validate dates with R -- Loading complex log files using regex in Power BI -- Apache access logs -- Importing Apache access logs in Power BI with Python -- Importing Apache access logs in Power BI with R -- Extracting values from text using regex in Power BI -- One regex to rule them all -- Using regex in Power BI to extract values with Python -- Using regex in Power BI to extract values with R -- Summary -- References -- Test your knowledge -- Chapter 7: Anonymizing and Pseudonymizing Your Data in Power BI -- Technical requirements -- De-identifying data -- De-identification techniques -- Information removal -- Data masking -- Data swapping -- Generalization -- Data perturbation -- Tokenization -- Hashing -- Encryption -- Understanding pseudonymization -- What is anonymization? -- Anonymizing data in Power BI -- Anonymizing data using Python -- Anonymizing data using R -- Pseudonymizing data in Power BI -- Pseudonymizing data using Python -- Pseudonymizing data using R -- Summary -- References -- Test your knowledge -- Chapter 8: Logging Data from Power BI to External Sources -- Technical requirements -- Logging to CSV files -- Logging to CSV files with Python Using the pandas module -- Logging emails to CSV files in Power BI with Python -- Logging to CSV files with R -- Using Tidyverse functions -- Logging dates to CSV files in Power BI with R -- Logging to Excel files -- Logging to Excel files with Python -- Using the pandas module -- Logging emails and dates to Excel files in Power BI with Python -- Logging to Excel files with R -- Using the readxl and openxlsx packages -- Logging emails and dates to Excel in Power BI with R -- Logging to (Azure) SQL Server -- Installing SQL Server Express -- Creating an Azure SQL Database -- Logging to an (Azure) SQL server with Python -- Using the pyodbc module -- Logging emails and dates to an Azure SQL Database in Power BI with Python -- Logging to an (Azure) SQL Server with R -- Using the DBI and odbc packages -- Logging emails and dates to an Azure SQL Database in Power BI with R -- Managing credentials in the code -- Creating environment variables -- Using environment variables in Python -- Using environment variables in R -- Summary -- References -- Test your knowledge -- Chapter 9: Loading Large Datasets Beyond the Available RAM in Power BI -- Technical requirements -- A typical analytic scenario using large datasets -- Importing large datasets with Python -- Installing Dask on your laptop -- Creating a Dask DataFrame -- Extracting information from a Dask DataFrame -- Importing a large dataset in Power BI with Python -- Importing large datasets with R -- Introducing Apache Arrow -- Installing arrow on your laptop -- Creating and extracting information from an Arrow Dataset object -- Importing a large dataset in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 10: Boosting Data Loading Speed in Power BI with Parquet Format -- Technical requirements -- From CSV to the Parquet file format Limitations of using Parquet files natively in Power BI -- Using Parquet files with Python -- Analyzing Parquet data with Dask -- Analyzing Parquet data with PyArrow -- Performance differences between Dask and PyArrow -- Using Parquet files with R -- Analyzing Parquet data with Arrow for R -- Using the Parquet format to speed up a Power BI report -- Transforming historical data in Parquet -- Appending new data to and analyzing the Parquet dataset -- Analyzing Parquet data in Power BI with Python -- Analyzing Parquet data in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 11: Calling External APIs to EnrichYour Data -- Technical requirements -- What is a web service? -- Registering for Bing Maps web services -- Geocoding addresses using Python -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the Geocoder library in parallel -- Geocoding addresses using R -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the tidygeocoder package in parallel -- Accessing web services using Power BI -- Geocoding addresses in Power BI with Python -- Geocoding addresses in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 12: Calculating Columns Using Complex Algorithms: Distances -- Technical requirements -- What is a distance? -- The distance between two geographic locations -- Some theory first -- Spherical trigonometry -- The law of Cosines distance -- The law of Haversines distance -- Vincenty's distance -- What kind of distance to use and when -- Implementing distances using Python -- Calculating distances with Python -- Calculating distances in Power BI with Python -- Implementing distances using R -- Calculating distances with R -- Calculating distances in Power BI with R -- The distance between two strings -- Some theory first The Hamming distance |
ctrlnum | (ZDB-30-PQE)EBC31233987 (ZDB-30-PAD)EBC31233987 (ZDB-89-EBL)EBL31233987 (OCoLC)1428439710 (DE-599)BVBBV049875096 |
dewey-full | 001.42260285 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.42260285 |
dewey-search | 001.42260285 |
dewey-sort | 11.42260285 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049875096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837635863</subfield><subfield code="9">978-1-83763-586-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31233987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31233987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31233987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1428439710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049875096</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.42260285</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zavarella, Luca</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extending Power BI with Python and R</subfield><subfield code="b">Perform Advanced Analysis Using the Power of Analytical Languages</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (815 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Where and How to Use R and Python Scripts in Power BI -- Technical requirements -- Injecting R or Python scripts into Power BI -- Data loading -- Data transformation -- Data visualization -- Using R and Python to interact with your data -- Python and R compatibility across Power BI products -- Summary -- Test your knowledge -- Chapter 2: Configuring R with Power BI -- Technical requirements -- The available R engines -- The CRAN R distribution -- The Microsoft R Open distribution and MRAN -- Multi-threading in MRO -- Choosing an R engine to install -- The R engines used by Power BI -- Installing the suggested R engines -- The R engine for data transformation -- The R engine for R script visuals on the Power BI service -- What to do when the Power BI service upgrades the R engine -- Installing an IDE for R development -- Installing RStudio -- Installing RTools -- Linking Intel's MKL to R -- Configuring Power BI Desktop to work with R -- Debugging an R script visual -- Configuring the Power BI service to work with R -- Installing the on-premises data gateway in personal mode -- Sharing reports that use R scripts in the Power BI service -- R script visuals limitations -- Summary -- Test your knowledge -- Chapter 3: Configuring Python with Power BI -- Technical requirements -- The available Python engines -- Choosing a Python engine to install -- The Python engines used by Power BI -- Installing the suggested Python engines -- The Python engine for data transformation -- Creating an environment for data transformations using pip -- Creating an optimized environment for data transformations using conda -- Creating an environment for Python script visuals on the Power BI service -- What to do when the Power BI service upgrades the Python engine</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Installing an IDE for Python development -- Configuring Python with RStudio -- Configuring Python with Visual Studio Code -- Working with the Python Interactive window in Visual Studio Code -- Configuring Power BI Desktop to work with Python -- Configuring the Power BI service to work with Python -- Sharing reports that use Python scripts in the Power BI service -- Limitations of Python visuals -- Summary -- Test your knowledge -- Chapter 4: Solving Common Issues When Using Python and R in Power BI -- Technical requirements -- Avoiding the ADO.NET error when running a Python script in Power BI -- The real cause of the problem -- A practical solution to the problem -- Avoiding the Formula.Firewall error -- Incompatible privacy levels -- Indirect access to a data source -- The easy way -- Combining queries and/or transformations -- Encapsulating queries into functions -- Using multiple datasets in Python and R script steps -- Applying a full join with Merge -- Using arguments of the Python.Execute function -- Dealing with dates/times in Python and R script steps -- Summary -- Test your knowledge -- Chapter 5: Importing Unhandled Data Objects -- Technical requirements -- Importing RDS files in R -- A brief introduction to Tidyverse -- Creating a serialized R object -- Configuring the environment and installing Tidyverse -- Creating the RDS files -- Using an RDS file in Power BI -- Importing an RDS file into the Power Query Editor -- Importing an RDS file in an R script visual -- Importing PKL files in Python -- A very short introduction to the PyData world -- Creating a serialized Python object -- Configuring the environment and installing the PyData packages -- Creating the PKL files -- Using a PKL file in Power BI -- Importing a PKL file into the Power Query Editor -- Importing a PKL file in a Python script visual -- Summary -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Test your knowledge -- Chapter 6: Using Regular Expressions in Power BI -- Technical requirements -- A brief introduction to regexes -- The basics of regexes -- Literal characters -- Special characters in regex -- The and anchors -- OR operators -- Negated character classes -- Shorthand character classes -- Quantifiers -- The dot -- Greedy and lazy matches -- Checking the validity of email addresses -- Checking the validity of dates -- Validating data using regex in Power BI -- Using regex in Power BI to validate emails with Python -- Using regex in Power BI to validate emails with R -- Using regex in Power BI to validate dates with Python -- Using regex in Power BI to validate dates with R -- Loading complex log files using regex in Power BI -- Apache access logs -- Importing Apache access logs in Power BI with Python -- Importing Apache access logs in Power BI with R -- Extracting values from text using regex in Power BI -- One regex to rule them all -- Using regex in Power BI to extract values with Python -- Using regex in Power BI to extract values with R -- Summary -- References -- Test your knowledge -- Chapter 7: Anonymizing and Pseudonymizing Your Data in Power BI -- Technical requirements -- De-identifying data -- De-identification techniques -- Information removal -- Data masking -- Data swapping -- Generalization -- Data perturbation -- Tokenization -- Hashing -- Encryption -- Understanding pseudonymization -- What is anonymization? -- Anonymizing data in Power BI -- Anonymizing data using Python -- Anonymizing data using R -- Pseudonymizing data in Power BI -- Pseudonymizing data using Python -- Pseudonymizing data using R -- Summary -- References -- Test your knowledge -- Chapter 8: Logging Data from Power BI to External Sources -- Technical requirements -- Logging to CSV files -- Logging to CSV files with Python</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using the pandas module -- Logging emails to CSV files in Power BI with Python -- Logging to CSV files with R -- Using Tidyverse functions -- Logging dates to CSV files in Power BI with R -- Logging to Excel files -- Logging to Excel files with Python -- Using the pandas module -- Logging emails and dates to Excel files in Power BI with Python -- Logging to Excel files with R -- Using the readxl and openxlsx packages -- Logging emails and dates to Excel in Power BI with R -- Logging to (Azure) SQL Server -- Installing SQL Server Express -- Creating an Azure SQL Database -- Logging to an (Azure) SQL server with Python -- Using the pyodbc module -- Logging emails and dates to an Azure SQL Database in Power BI with Python -- Logging to an (Azure) SQL Server with R -- Using the DBI and odbc packages -- Logging emails and dates to an Azure SQL Database in Power BI with R -- Managing credentials in the code -- Creating environment variables -- Using environment variables in Python -- Using environment variables in R -- Summary -- References -- Test your knowledge -- Chapter 9: Loading Large Datasets Beyond the Available RAM in Power BI -- Technical requirements -- A typical analytic scenario using large datasets -- Importing large datasets with Python -- Installing Dask on your laptop -- Creating a Dask DataFrame -- Extracting information from a Dask DataFrame -- Importing a large dataset in Power BI with Python -- Importing large datasets with R -- Introducing Apache Arrow -- Installing arrow on your laptop -- Creating and extracting information from an Arrow Dataset object -- Importing a large dataset in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 10: Boosting Data Loading Speed in Power BI with Parquet Format -- Technical requirements -- From CSV to the Parquet file format</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Limitations of using Parquet files natively in Power BI -- Using Parquet files with Python -- Analyzing Parquet data with Dask -- Analyzing Parquet data with PyArrow -- Performance differences between Dask and PyArrow -- Using Parquet files with R -- Analyzing Parquet data with Arrow for R -- Using the Parquet format to speed up a Power BI report -- Transforming historical data in Parquet -- Appending new data to and analyzing the Parquet dataset -- Analyzing Parquet data in Power BI with Python -- Analyzing Parquet data in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 11: Calling External APIs to EnrichYour Data -- Technical requirements -- What is a web service? -- Registering for Bing Maps web services -- Geocoding addresses using Python -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the Geocoder library in parallel -- Geocoding addresses using R -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the tidygeocoder package in parallel -- Accessing web services using Power BI -- Geocoding addresses in Power BI with Python -- Geocoding addresses in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 12: Calculating Columns Using Complex Algorithms: Distances -- Technical requirements -- What is a distance? -- The distance between two geographic locations -- Some theory first -- Spherical trigonometry -- The law of Cosines distance -- The law of Haversines distance -- Vincenty's distance -- What kind of distance to use and when -- Implementing distances using Python -- Calculating distances with Python -- Calculating distances in Power BI with Python -- Implementing distances using R -- Calculating distances with R -- Calculating distances in Power BI with R -- The distance between two strings -- Some theory first</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Hamming distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business intelligence-Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining-Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information visualization-Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Talwar, Rajat</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Zavarella, Luca</subfield><subfield code="t">Extending Power BI with Python and R</subfield><subfield code="d">Birmingham : Packt Publishing, Limited,c2024</subfield><subfield code="z">9781837639533</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035214554</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31233987</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049875096 |
illustrated | Not Illustrated |
indexdate | 2024-09-19T05:22:08Z |
institution | BVB |
isbn | 9781837635863 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035214554 |
oclc_num | 1428439710 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (815 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Zavarella, Luca Verfasser aut Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages 2nd ed Birmingham Packt Publishing, Limited 2024 ©2024 1 Online-Ressource (815 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Where and How to Use R and Python Scripts in Power BI -- Technical requirements -- Injecting R or Python scripts into Power BI -- Data loading -- Data transformation -- Data visualization -- Using R and Python to interact with your data -- Python and R compatibility across Power BI products -- Summary -- Test your knowledge -- Chapter 2: Configuring R with Power BI -- Technical requirements -- The available R engines -- The CRAN R distribution -- The Microsoft R Open distribution and MRAN -- Multi-threading in MRO -- Choosing an R engine to install -- The R engines used by Power BI -- Installing the suggested R engines -- The R engine for data transformation -- The R engine for R script visuals on the Power BI service -- What to do when the Power BI service upgrades the R engine -- Installing an IDE for R development -- Installing RStudio -- Installing RTools -- Linking Intel's MKL to R -- Configuring Power BI Desktop to work with R -- Debugging an R script visual -- Configuring the Power BI service to work with R -- Installing the on-premises data gateway in personal mode -- Sharing reports that use R scripts in the Power BI service -- R script visuals limitations -- Summary -- Test your knowledge -- Chapter 3: Configuring Python with Power BI -- Technical requirements -- The available Python engines -- Choosing a Python engine to install -- The Python engines used by Power BI -- Installing the suggested Python engines -- The Python engine for data transformation -- Creating an environment for data transformations using pip -- Creating an optimized environment for data transformations using conda -- Creating an environment for Python script visuals on the Power BI service -- What to do when the Power BI service upgrades the Python engine Installing an IDE for Python development -- Configuring Python with RStudio -- Configuring Python with Visual Studio Code -- Working with the Python Interactive window in Visual Studio Code -- Configuring Power BI Desktop to work with Python -- Configuring the Power BI service to work with Python -- Sharing reports that use Python scripts in the Power BI service -- Limitations of Python visuals -- Summary -- Test your knowledge -- Chapter 4: Solving Common Issues When Using Python and R in Power BI -- Technical requirements -- Avoiding the ADO.NET error when running a Python script in Power BI -- The real cause of the problem -- A practical solution to the problem -- Avoiding the Formula.Firewall error -- Incompatible privacy levels -- Indirect access to a data source -- The easy way -- Combining queries and/or transformations -- Encapsulating queries into functions -- Using multiple datasets in Python and R script steps -- Applying a full join with Merge -- Using arguments of the Python.Execute function -- Dealing with dates/times in Python and R script steps -- Summary -- Test your knowledge -- Chapter 5: Importing Unhandled Data Objects -- Technical requirements -- Importing RDS files in R -- A brief introduction to Tidyverse -- Creating a serialized R object -- Configuring the environment and installing Tidyverse -- Creating the RDS files -- Using an RDS file in Power BI -- Importing an RDS file into the Power Query Editor -- Importing an RDS file in an R script visual -- Importing PKL files in Python -- A very short introduction to the PyData world -- Creating a serialized Python object -- Configuring the environment and installing the PyData packages -- Creating the PKL files -- Using a PKL file in Power BI -- Importing a PKL file into the Power Query Editor -- Importing a PKL file in a Python script visual -- Summary -- References Test your knowledge -- Chapter 6: Using Regular Expressions in Power BI -- Technical requirements -- A brief introduction to regexes -- The basics of regexes -- Literal characters -- Special characters in regex -- The and anchors -- OR operators -- Negated character classes -- Shorthand character classes -- Quantifiers -- The dot -- Greedy and lazy matches -- Checking the validity of email addresses -- Checking the validity of dates -- Validating data using regex in Power BI -- Using regex in Power BI to validate emails with Python -- Using regex in Power BI to validate emails with R -- Using regex in Power BI to validate dates with Python -- Using regex in Power BI to validate dates with R -- Loading complex log files using regex in Power BI -- Apache access logs -- Importing Apache access logs in Power BI with Python -- Importing Apache access logs in Power BI with R -- Extracting values from text using regex in Power BI -- One regex to rule them all -- Using regex in Power BI to extract values with Python -- Using regex in Power BI to extract values with R -- Summary -- References -- Test your knowledge -- Chapter 7: Anonymizing and Pseudonymizing Your Data in Power BI -- Technical requirements -- De-identifying data -- De-identification techniques -- Information removal -- Data masking -- Data swapping -- Generalization -- Data perturbation -- Tokenization -- Hashing -- Encryption -- Understanding pseudonymization -- What is anonymization? -- Anonymizing data in Power BI -- Anonymizing data using Python -- Anonymizing data using R -- Pseudonymizing data in Power BI -- Pseudonymizing data using Python -- Pseudonymizing data using R -- Summary -- References -- Test your knowledge -- Chapter 8: Logging Data from Power BI to External Sources -- Technical requirements -- Logging to CSV files -- Logging to CSV files with Python Using the pandas module -- Logging emails to CSV files in Power BI with Python -- Logging to CSV files with R -- Using Tidyverse functions -- Logging dates to CSV files in Power BI with R -- Logging to Excel files -- Logging to Excel files with Python -- Using the pandas module -- Logging emails and dates to Excel files in Power BI with Python -- Logging to Excel files with R -- Using the readxl and openxlsx packages -- Logging emails and dates to Excel in Power BI with R -- Logging to (Azure) SQL Server -- Installing SQL Server Express -- Creating an Azure SQL Database -- Logging to an (Azure) SQL server with Python -- Using the pyodbc module -- Logging emails and dates to an Azure SQL Database in Power BI with Python -- Logging to an (Azure) SQL Server with R -- Using the DBI and odbc packages -- Logging emails and dates to an Azure SQL Database in Power BI with R -- Managing credentials in the code -- Creating environment variables -- Using environment variables in Python -- Using environment variables in R -- Summary -- References -- Test your knowledge -- Chapter 9: Loading Large Datasets Beyond the Available RAM in Power BI -- Technical requirements -- A typical analytic scenario using large datasets -- Importing large datasets with Python -- Installing Dask on your laptop -- Creating a Dask DataFrame -- Extracting information from a Dask DataFrame -- Importing a large dataset in Power BI with Python -- Importing large datasets with R -- Introducing Apache Arrow -- Installing arrow on your laptop -- Creating and extracting information from an Arrow Dataset object -- Importing a large dataset in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 10: Boosting Data Loading Speed in Power BI with Parquet Format -- Technical requirements -- From CSV to the Parquet file format Limitations of using Parquet files natively in Power BI -- Using Parquet files with Python -- Analyzing Parquet data with Dask -- Analyzing Parquet data with PyArrow -- Performance differences between Dask and PyArrow -- Using Parquet files with R -- Analyzing Parquet data with Arrow for R -- Using the Parquet format to speed up a Power BI report -- Transforming historical data in Parquet -- Appending new data to and analyzing the Parquet dataset -- Analyzing Parquet data in Power BI with Python -- Analyzing Parquet data in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 11: Calling External APIs to EnrichYour Data -- Technical requirements -- What is a web service? -- Registering for Bing Maps web services -- Geocoding addresses using Python -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the Geocoder library in parallel -- Geocoding addresses using R -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the tidygeocoder package in parallel -- Accessing web services using Power BI -- Geocoding addresses in Power BI with Python -- Geocoding addresses in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 12: Calculating Columns Using Complex Algorithms: Distances -- Technical requirements -- What is a distance? -- The distance between two geographic locations -- Some theory first -- Spherical trigonometry -- The law of Cosines distance -- The law of Haversines distance -- Vincenty's distance -- What kind of distance to use and when -- Implementing distances using Python -- Calculating distances with Python -- Calculating distances in Power BI with Python -- Implementing distances using R -- Calculating distances with R -- Calculating distances in Power BI with R -- The distance between two strings -- Some theory first The Hamming distance Business intelligence-Computer programs Data mining-Computer programs Information visualization-Computer programs Python (Computer program language) Talwar, Rajat Sonstige oth Erscheint auch als Druck-Ausgabe Zavarella, Luca Extending Power BI with Python and R Birmingham : Packt Publishing, Limited,c2024 9781837639533 |
spellingShingle | Zavarella, Luca Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Where and How to Use R and Python Scripts in Power BI -- Technical requirements -- Injecting R or Python scripts into Power BI -- Data loading -- Data transformation -- Data visualization -- Using R and Python to interact with your data -- Python and R compatibility across Power BI products -- Summary -- Test your knowledge -- Chapter 2: Configuring R with Power BI -- Technical requirements -- The available R engines -- The CRAN R distribution -- The Microsoft R Open distribution and MRAN -- Multi-threading in MRO -- Choosing an R engine to install -- The R engines used by Power BI -- Installing the suggested R engines -- The R engine for data transformation -- The R engine for R script visuals on the Power BI service -- What to do when the Power BI service upgrades the R engine -- Installing an IDE for R development -- Installing RStudio -- Installing RTools -- Linking Intel's MKL to R -- Configuring Power BI Desktop to work with R -- Debugging an R script visual -- Configuring the Power BI service to work with R -- Installing the on-premises data gateway in personal mode -- Sharing reports that use R scripts in the Power BI service -- R script visuals limitations -- Summary -- Test your knowledge -- Chapter 3: Configuring Python with Power BI -- Technical requirements -- The available Python engines -- Choosing a Python engine to install -- The Python engines used by Power BI -- Installing the suggested Python engines -- The Python engine for data transformation -- Creating an environment for data transformations using pip -- Creating an optimized environment for data transformations using conda -- Creating an environment for Python script visuals on the Power BI service -- What to do when the Power BI service upgrades the Python engine Installing an IDE for Python development -- Configuring Python with RStudio -- Configuring Python with Visual Studio Code -- Working with the Python Interactive window in Visual Studio Code -- Configuring Power BI Desktop to work with Python -- Configuring the Power BI service to work with Python -- Sharing reports that use Python scripts in the Power BI service -- Limitations of Python visuals -- Summary -- Test your knowledge -- Chapter 4: Solving Common Issues When Using Python and R in Power BI -- Technical requirements -- Avoiding the ADO.NET error when running a Python script in Power BI -- The real cause of the problem -- A practical solution to the problem -- Avoiding the Formula.Firewall error -- Incompatible privacy levels -- Indirect access to a data source -- The easy way -- Combining queries and/or transformations -- Encapsulating queries into functions -- Using multiple datasets in Python and R script steps -- Applying a full join with Merge -- Using arguments of the Python.Execute function -- Dealing with dates/times in Python and R script steps -- Summary -- Test your knowledge -- Chapter 5: Importing Unhandled Data Objects -- Technical requirements -- Importing RDS files in R -- A brief introduction to Tidyverse -- Creating a serialized R object -- Configuring the environment and installing Tidyverse -- Creating the RDS files -- Using an RDS file in Power BI -- Importing an RDS file into the Power Query Editor -- Importing an RDS file in an R script visual -- Importing PKL files in Python -- A very short introduction to the PyData world -- Creating a serialized Python object -- Configuring the environment and installing the PyData packages -- Creating the PKL files -- Using a PKL file in Power BI -- Importing a PKL file into the Power Query Editor -- Importing a PKL file in a Python script visual -- Summary -- References Test your knowledge -- Chapter 6: Using Regular Expressions in Power BI -- Technical requirements -- A brief introduction to regexes -- The basics of regexes -- Literal characters -- Special characters in regex -- The and anchors -- OR operators -- Negated character classes -- Shorthand character classes -- Quantifiers -- The dot -- Greedy and lazy matches -- Checking the validity of email addresses -- Checking the validity of dates -- Validating data using regex in Power BI -- Using regex in Power BI to validate emails with Python -- Using regex in Power BI to validate emails with R -- Using regex in Power BI to validate dates with Python -- Using regex in Power BI to validate dates with R -- Loading complex log files using regex in Power BI -- Apache access logs -- Importing Apache access logs in Power BI with Python -- Importing Apache access logs in Power BI with R -- Extracting values from text using regex in Power BI -- One regex to rule them all -- Using regex in Power BI to extract values with Python -- Using regex in Power BI to extract values with R -- Summary -- References -- Test your knowledge -- Chapter 7: Anonymizing and Pseudonymizing Your Data in Power BI -- Technical requirements -- De-identifying data -- De-identification techniques -- Information removal -- Data masking -- Data swapping -- Generalization -- Data perturbation -- Tokenization -- Hashing -- Encryption -- Understanding pseudonymization -- What is anonymization? -- Anonymizing data in Power BI -- Anonymizing data using Python -- Anonymizing data using R -- Pseudonymizing data in Power BI -- Pseudonymizing data using Python -- Pseudonymizing data using R -- Summary -- References -- Test your knowledge -- Chapter 8: Logging Data from Power BI to External Sources -- Technical requirements -- Logging to CSV files -- Logging to CSV files with Python Using the pandas module -- Logging emails to CSV files in Power BI with Python -- Logging to CSV files with R -- Using Tidyverse functions -- Logging dates to CSV files in Power BI with R -- Logging to Excel files -- Logging to Excel files with Python -- Using the pandas module -- Logging emails and dates to Excel files in Power BI with Python -- Logging to Excel files with R -- Using the readxl and openxlsx packages -- Logging emails and dates to Excel in Power BI with R -- Logging to (Azure) SQL Server -- Installing SQL Server Express -- Creating an Azure SQL Database -- Logging to an (Azure) SQL server with Python -- Using the pyodbc module -- Logging emails and dates to an Azure SQL Database in Power BI with Python -- Logging to an (Azure) SQL Server with R -- Using the DBI and odbc packages -- Logging emails and dates to an Azure SQL Database in Power BI with R -- Managing credentials in the code -- Creating environment variables -- Using environment variables in Python -- Using environment variables in R -- Summary -- References -- Test your knowledge -- Chapter 9: Loading Large Datasets Beyond the Available RAM in Power BI -- Technical requirements -- A typical analytic scenario using large datasets -- Importing large datasets with Python -- Installing Dask on your laptop -- Creating a Dask DataFrame -- Extracting information from a Dask DataFrame -- Importing a large dataset in Power BI with Python -- Importing large datasets with R -- Introducing Apache Arrow -- Installing arrow on your laptop -- Creating and extracting information from an Arrow Dataset object -- Importing a large dataset in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 10: Boosting Data Loading Speed in Power BI with Parquet Format -- Technical requirements -- From CSV to the Parquet file format Limitations of using Parquet files natively in Power BI -- Using Parquet files with Python -- Analyzing Parquet data with Dask -- Analyzing Parquet data with PyArrow -- Performance differences between Dask and PyArrow -- Using Parquet files with R -- Analyzing Parquet data with Arrow for R -- Using the Parquet format to speed up a Power BI report -- Transforming historical data in Parquet -- Appending new data to and analyzing the Parquet dataset -- Analyzing Parquet data in Power BI with Python -- Analyzing Parquet data in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 11: Calling External APIs to EnrichYour Data -- Technical requirements -- What is a web service? -- Registering for Bing Maps web services -- Geocoding addresses using Python -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the Geocoder library in parallel -- Geocoding addresses using R -- Using an explicit GET request -- Using an explicit GET request in parallel -- Using the tidygeocoder package in parallel -- Accessing web services using Power BI -- Geocoding addresses in Power BI with Python -- Geocoding addresses in Power BI with R -- Summary -- References -- Test your knowledge -- Chapter 12: Calculating Columns Using Complex Algorithms: Distances -- Technical requirements -- What is a distance? -- The distance between two geographic locations -- Some theory first -- Spherical trigonometry -- The law of Cosines distance -- The law of Haversines distance -- Vincenty's distance -- What kind of distance to use and when -- Implementing distances using Python -- Calculating distances with Python -- Calculating distances in Power BI with Python -- Implementing distances using R -- Calculating distances with R -- Calculating distances in Power BI with R -- The distance between two strings -- Some theory first The Hamming distance Business intelligence-Computer programs Data mining-Computer programs Information visualization-Computer programs Python (Computer program language) |
title | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_auth | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_exact_search | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_full | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_fullStr | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_full_unstemmed | Extending Power BI with Python and R Perform Advanced Analysis Using the Power of Analytical Languages |
title_short | Extending Power BI with Python and R |
title_sort | extending power bi with python and r perform advanced analysis using the power of analytical languages |
title_sub | Perform Advanced Analysis Using the Power of Analytical Languages |
topic | Business intelligence-Computer programs Data mining-Computer programs Information visualization-Computer programs Python (Computer program language) |
topic_facet | Business intelligence-Computer programs Data mining-Computer programs Information visualization-Computer programs Python (Computer program language) |
work_keys_str_mv | AT zavarellaluca extendingpowerbiwithpythonandrperformadvancedanalysisusingthepowerofanalyticallanguages AT talwarrajat extendingpowerbiwithpythonandrperformadvancedanalysisusingthepowerofanalyticallanguages |