Essays in Honor of M. Hashem Pesaran: Panel Modeling, Micro Applications, and Econometric Methodology
The collection of chapters in Volume 43 Part B of Advances in Econometricsserves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bingley
Emerald Publishing Limited
2022
|
Ausgabe: | 1st ed |
Schriftenreihe: | Advances in Econometrics Series
v.43, Part B |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Zusammenfassung: | The collection of chapters in Volume 43 Part B of Advances in Econometricsserves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (372 Seiten) |
ISBN: | 9781802620658 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049874187 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2022 xx o|||| 00||| eng d | ||
020 | |a 9781802620658 |9 978-1-80262-065-8 | ||
035 | |a (ZDB-30-PQE)EBC6846509 | ||
035 | |a (ZDB-30-PAD)EBC6846509 | ||
035 | |a (ZDB-89-EBL)EBL6846509 | ||
035 | |a (OCoLC)1293241978 | ||
035 | |a (DE-599)BVBBV049874187 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 330.015195 | |
084 | |a QB 920 |0 (DE-625)141232: |2 rvk | ||
100 | 1 | |a Chudik, Alexander |e Verfasser |4 aut | |
245 | 1 | 0 | |a Essays in Honor of M. Hashem Pesaran |b Panel Modeling, Micro Applications, and Econometric Methodology |
250 | |a 1st ed | ||
264 | 1 | |a Bingley |b Emerald Publishing Limited |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (372 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Econometrics Series |v v.43, Part B | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Half Title Page -- Series editors Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part B: Panel Modeling, Micro Applications, and Econometric Methodology -- Part B1. Panel Data Methods -- Part B2. Micro Modeling -- Part B3. Econometric Methodologies -- References -- Part B1: Panel Data Methods -- Chapter 1: A Panel Data Model With Generalized Higher-Order Network Effects -- 1. Introduction -- 2. Model -- 2.1. Notation and Outline -- 2.2. Key Assumptions -- 3. Monte Carlo simulations -- 3.1. Design -- 3.2. Results -- 3.3. Likelihood-Ratio Tests -- 4. Conclusions -- References -- Chapter 2: Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects -- 1. Introduction -- 2. Spatial and Spatio-Temporal Error Correction Models -- 3. Spatio-Temporal ECM, Common Correlated Effects and Weak Dependence -- 4. An Application to House Prices in the UK -- 4.1. Economic Model -- 4.2. Data -- 4.3. Discussion of Results -- 5. Conclusion -- Acknowledgments -- References -- Appendix: Estimation Steps -- Chapter 3: Heterogeneity and Dynamic Dependence in Panel Analysis of Individual Behavior -- 1. Introduction -- 2. Dynamic Response Path of Labor Participation Decision to a Health Shock -- Parameter Heterogeneity (Stability) of a State-Dependent Model -- Concluding Remarks -- References -- Appendix -- A Cohort Approach to Estimate Fixed Individual-Specific Effects for a Dynamic Binary State-Dependent Model -- Chapter 4: Multiple Treatment Effects in Panel-Heterogeneity and Aggregation -- 1. Introduction -- 2. Measurement of Treatment Effects and Sample Configuration -- 3. Homogeneous or Heterogeneous Treatment Effects -- 4. Aggregation Methods -- 5. To Aggregate or Not -- 5.1. Criterion -- 5.2. Test of Significance between the Aggregate and Disaggregate Approaches | |
505 | 8 | |a Test 1: Diebold and Mariano (1995) Asymptotic Test -- Test 2. The Sign Test -- Test 3. The Wilcoxon's Signed-Rank Test -- 6. Monte Carlo Simulation -- 7. Analysis of China's P2P Market -- 7.1. A Brief History -- 7.2. The Model and the Data -- 8. Conclusion -- References -- Chapter 5: Backward Mean Transformation in Panel Data with Predetermined Regressors -- 1. Introduction -- 2. The Model -- 3. Asymptotic Theory -- 3.1. Stationary Setup -- 3.2. Mean Non-stationarity -- 3.3. A Stylized Autoregressive Model -- 4. Other Approaches Based on Backward Means -- 4.1. Bias-Corrected OBM -- 4.2. OLS-IV Estimator of Everaert (2013) -- 4.3. Other Hybrid OLS-IV Estimators -- 4.4. Explanatory Notes on Everaert (2013) -- 5. Finite Sample Results -- 6. Concluding Remarks -- References -- Appendix. Tables: Monte Carlo Results for the Dynamic Model -- Chapter 6: Various Asymptotic Distributions of the Error-Components Test for Cross-Sectional Correlation -- Introduction -- 2. A Review on the Double-Indexed CLT -- 3. Testing for Cross-Sectional Correlation -- 3.1. The Conventional Test Statistic -- 3.2. A Modified Test Statistic -- 3.3. Simulating the Critical Values for Fixed T, Equation (17) -- 4. A Monte Carlo Experiment -- References -- Appendix: Technical Proofs -- Chapter 7: Trimmed Mean Group Estimation -- 1. Introduction -- 2. Motivation -- 2.1. Weighted Mean Group Estimation -- 2.2. Trimming Based on the Variances of Regressors -- 2.3. Examples -- 2.4. Trimming Weights -- 3. Trimmed Mean Group Estimation -- 3.1. Trimmed MG Estimator for Two‐Way FE Models -- 3.2. Trimmed CCEMG Estimator -- 4. Monte Carlo Simulation -- 5. Empirical Illustration: Effect of Police on Crime -- 6. Concluding Remarks -- References -- Part B2: Micro Modeling -- Chapter 8: Corporate Indebtedness and Low Productivity Growth of Italian Firms -- 1. Introduction -- 2. Data | |
505 | 8 | |a 3. Descriptive Statistics -- 3.1. Coverage -- 3.2. Evolution of Firm Indebtedness -- 3.3. Firm Productivity -- 4. Empirical Framework -- 4.1. Auto-Regressive Distributed Lag (ARDL) Approach -- 4.1.1. Estimation and Panel Tests of Threshold Effects -- 4.2. Distributed Lag (DL) Approach -- 4.3. Cross-Sectionally Augmented ARDL and DL Approaches -- 5. Results -- 5.1. Estimates of Long-Run Effects -- 5.2. Tests of Corporate-Debt Threshold Effects -- 5.3. Economic Significance -- 6. Conclusion -- References -- Chapter 9: Women's Potential Earnings Distributions -- 1. Introduction -- 2. Empirical Methods -- 2.1. Basic Notations -- 2.2. Comparing Two Distributions: Entropy‐Based Measures and Stochastic Dominance Tests -- 2.2.1. Entropy‐Based Measures -- 2.2.2. Stochastic Dominance -- 2.3. Identification and Estimation of Counterfactual Distributions -- 2.3.1. Without Selection -- 2.3.2. Accounting for Selection -- 3. Data -- 4. Baseline Results -- 4.1. Female Wage Versus Counterfactual Distribution #1 -- 4.1.1. Entropy and Conventional Measures of the Differences -- 4.1.2. Stochastic Dominance Test Results -- 4.2. Female Wage Versus Counterfactual Distribution #2 -- 5. Results Addressing Selection -- 6. Conclusions -- References -- Part B3: Econometric Methodologies -- Chapter 10: Where (and by How Much) Does a Theory Break Down? With an Application to the Expectation Hypothesis -- 1. Introduction -- 2. The EH: Implied Relations and Previous Findings -- 3. NP Evidence: Where Do the Violations of the EH Come From? -- 4. The Last Straw: How Many Observations Cause the Rejection of the Hypothesis? -- 4.1. RLS on the Sorted Data -- 4.2. LS with Sequential Thresholds, on the Original Data -- 4.3. Further Discussion of the Methodology -- 5. Concluding Comments -- References -- Chapter 11: Gaussian Rank Correlation and Regression -- 1. Introduction | |
505 | 8 | |a 2. Theoretical Background -- 2.1. Econometric Model -- 2.2. The Score Vector and the Hessian Matrix -- 2.3. Partial Correlation and Regression -- 3. Asymptotic Properties under Correct Specification -- 3.1. When Margins Are Known -- 3.1.1. Information Matrix Equality -- 3.1.2. Asymptotic Distribution of the ML Estimators -- 3.2. Replacing Margins with Empirical cdf's -- 3.3. Efficiency Comparison with Other Moment Estimators -- 3.3.1. Correlation Measures -- 3.3.2. Partial Correlation Coefficients and Regression -- 4. Misspecification Analysis -- 4.1. Pseudo-true Values -- 4.2. Asymptotic Distribution -- 5. Comparison with Alternative Estimators -- 5.1. Spearman Correlation -- 5.2. Pearson Correlation -- 5.3. Comparison -- 6. Monte Carlo Evidence -- 6.1. Design and Estimation Details -- 6.2. Sampling Distribution of the Different Estimators -- 6.3. Finite Sample Inference -- 6.4. The Effect of Outliers -- 7. Empirical Applications -- 7.1. Migration and Growth Rates -- 7.2. The Augmented Solow Growth Model -- 8. Conclusions and Directions for Further Research -- References -- Appendix A.Some Practical Considerations -- Chapter 12: Robust Dynamic Panel Data Models Using ε-Contamination -- 1. Introduction -- 2. A Robust Linear Dynamic Panel Data Model -- 2.1. The Static Framework -- 2.2. The Dynamic Framework -- 2.3. The Robust Dynamic Linear Model in the Two-stage Hierarchy -- 2.3.1. The First Step of the Robust Bayesian Estimator -- 2.3.2. The Second Step of the Robust Bayesian Estimator -- 2.4. Estimating the ML-II Posterior Variance-Covariance Matrix -- 3. Monte Carlo Simulation Study -- 3.1. The DGP of the Monte Carlo Simulation Study -- 3.1.1. The random effects World -- 3.1.2. The Chamberlain-type fixed effects World -- 3.1.3. The Hausman-Taylor World -- 3.1.4. The Dynamic Homogeneous Panel Data World with Common Trends | |
505 | 8 | |a 3.1.5. The Dynamic Homogeneous Panel Data World with Common Correlated Effects -- 3.1.6. The Dynamic Heterogeneous Panel Data World with Common Correlated Effects -- 4. Conclusion -- Notes -- References -- Chapter 13: Identification‐robust Inference for Endogeneity Parameters in Models with an Incomplete Reduced Form -- 1. Introduction -- 2. Framework and Notation -- 2.1. Basic Structural Framework -- 2.2. Notation -- 3. Asymptotic Assumptions -- 4. Two‐stage inference for endogeneity covariances -- 4.1. Inference for Structural Parameter β -- 4.2. Conditional Point Estimation of Endogeneity Covariances -- 4.3. Joint Inference for Structural Parameters and Endogeneity Covariances -- 4.4. Projection‐based Inference for Endogeneity Covariances -- 5. Inference for Total Effect -- 6. Exogeneity Tests -- 7. Application to Return‐to‐Schooling Model -- 7.1. Data -- 7.2. Results -- 8. Conclusion -- References -- Index | |
520 | |a The collection of chapters in Volume 43 Part B of Advances in Econometricsserves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran | ||
650 | 4 | |a Econometrics | |
650 | 0 | 7 | |a Makroökonomisches Modell |0 (DE-588)4074486-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
689 | 0 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | 1 | |a Makroökonomisches Modell |0 (DE-588)4074486-3 |D s |
689 | 0 | 2 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hsiao, Cheng |e Sonstige |4 oth | |
700 | 1 | |a Timmermann, Allan |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Chudik, Alexander |t Essays in Honor of M. Hashem Pesaran |d Bingley : Emerald Publishing Limited,c2022 |z 9781802620665 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035213645 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6846509 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820889810779242496 |
---|---|
adam_text | |
any_adam_object | |
author | Chudik, Alexander |
author_facet | Chudik, Alexander |
author_role | aut |
author_sort | Chudik, Alexander |
author_variant | a c ac |
building | Verbundindex |
bvnumber | BV049874187 |
classification_rvk | QB 920 |
collection | ZDB-30-PQE |
contents | Intro -- Half Title Page -- Series editors Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part B: Panel Modeling, Micro Applications, and Econometric Methodology -- Part B1. Panel Data Methods -- Part B2. Micro Modeling -- Part B3. Econometric Methodologies -- References -- Part B1: Panel Data Methods -- Chapter 1: A Panel Data Model With Generalized Higher-Order Network Effects -- 1. Introduction -- 2. Model -- 2.1. Notation and Outline -- 2.2. Key Assumptions -- 3. Monte Carlo simulations -- 3.1. Design -- 3.2. Results -- 3.3. Likelihood-Ratio Tests -- 4. Conclusions -- References -- Chapter 2: Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects -- 1. Introduction -- 2. Spatial and Spatio-Temporal Error Correction Models -- 3. Spatio-Temporal ECM, Common Correlated Effects and Weak Dependence -- 4. An Application to House Prices in the UK -- 4.1. Economic Model -- 4.2. Data -- 4.3. Discussion of Results -- 5. Conclusion -- Acknowledgments -- References -- Appendix: Estimation Steps -- Chapter 3: Heterogeneity and Dynamic Dependence in Panel Analysis of Individual Behavior -- 1. Introduction -- 2. Dynamic Response Path of Labor Participation Decision to a Health Shock -- Parameter Heterogeneity (Stability) of a State-Dependent Model -- Concluding Remarks -- References -- Appendix -- A Cohort Approach to Estimate Fixed Individual-Specific Effects for a Dynamic Binary State-Dependent Model -- Chapter 4: Multiple Treatment Effects in Panel-Heterogeneity and Aggregation -- 1. Introduction -- 2. Measurement of Treatment Effects and Sample Configuration -- 3. Homogeneous or Heterogeneous Treatment Effects -- 4. Aggregation Methods -- 5. To Aggregate or Not -- 5.1. Criterion -- 5.2. Test of Significance between the Aggregate and Disaggregate Approaches Test 1: Diebold and Mariano (1995) Asymptotic Test -- Test 2. The Sign Test -- Test 3. The Wilcoxon's Signed-Rank Test -- 6. Monte Carlo Simulation -- 7. Analysis of China's P2P Market -- 7.1. A Brief History -- 7.2. The Model and the Data -- 8. Conclusion -- References -- Chapter 5: Backward Mean Transformation in Panel Data with Predetermined Regressors -- 1. Introduction -- 2. The Model -- 3. Asymptotic Theory -- 3.1. Stationary Setup -- 3.2. Mean Non-stationarity -- 3.3. A Stylized Autoregressive Model -- 4. Other Approaches Based on Backward Means -- 4.1. Bias-Corrected OBM -- 4.2. OLS-IV Estimator of Everaert (2013) -- 4.3. Other Hybrid OLS-IV Estimators -- 4.4. Explanatory Notes on Everaert (2013) -- 5. Finite Sample Results -- 6. Concluding Remarks -- References -- Appendix. Tables: Monte Carlo Results for the Dynamic Model -- Chapter 6: Various Asymptotic Distributions of the Error-Components Test for Cross-Sectional Correlation -- Introduction -- 2. A Review on the Double-Indexed CLT -- 3. Testing for Cross-Sectional Correlation -- 3.1. The Conventional Test Statistic -- 3.2. A Modified Test Statistic -- 3.3. Simulating the Critical Values for Fixed T, Equation (17) -- 4. A Monte Carlo Experiment -- References -- Appendix: Technical Proofs -- Chapter 7: Trimmed Mean Group Estimation -- 1. Introduction -- 2. Motivation -- 2.1. Weighted Mean Group Estimation -- 2.2. Trimming Based on the Variances of Regressors -- 2.3. Examples -- 2.4. Trimming Weights -- 3. Trimmed Mean Group Estimation -- 3.1. Trimmed MG Estimator for Two‐Way FE Models -- 3.2. Trimmed CCEMG Estimator -- 4. Monte Carlo Simulation -- 5. Empirical Illustration: Effect of Police on Crime -- 6. Concluding Remarks -- References -- Part B2: Micro Modeling -- Chapter 8: Corporate Indebtedness and Low Productivity Growth of Italian Firms -- 1. Introduction -- 2. Data 3. Descriptive Statistics -- 3.1. Coverage -- 3.2. Evolution of Firm Indebtedness -- 3.3. Firm Productivity -- 4. Empirical Framework -- 4.1. Auto-Regressive Distributed Lag (ARDL) Approach -- 4.1.1. Estimation and Panel Tests of Threshold Effects -- 4.2. Distributed Lag (DL) Approach -- 4.3. Cross-Sectionally Augmented ARDL and DL Approaches -- 5. Results -- 5.1. Estimates of Long-Run Effects -- 5.2. Tests of Corporate-Debt Threshold Effects -- 5.3. Economic Significance -- 6. Conclusion -- References -- Chapter 9: Women's Potential Earnings Distributions -- 1. Introduction -- 2. Empirical Methods -- 2.1. Basic Notations -- 2.2. Comparing Two Distributions: Entropy‐Based Measures and Stochastic Dominance Tests -- 2.2.1. Entropy‐Based Measures -- 2.2.2. Stochastic Dominance -- 2.3. Identification and Estimation of Counterfactual Distributions -- 2.3.1. Without Selection -- 2.3.2. Accounting for Selection -- 3. Data -- 4. Baseline Results -- 4.1. Female Wage Versus Counterfactual Distribution #1 -- 4.1.1. Entropy and Conventional Measures of the Differences -- 4.1.2. Stochastic Dominance Test Results -- 4.2. Female Wage Versus Counterfactual Distribution #2 -- 5. Results Addressing Selection -- 6. Conclusions -- References -- Part B3: Econometric Methodologies -- Chapter 10: Where (and by How Much) Does a Theory Break Down? With an Application to the Expectation Hypothesis -- 1. Introduction -- 2. The EH: Implied Relations and Previous Findings -- 3. NP Evidence: Where Do the Violations of the EH Come From? -- 4. The Last Straw: How Many Observations Cause the Rejection of the Hypothesis? -- 4.1. RLS on the Sorted Data -- 4.2. LS with Sequential Thresholds, on the Original Data -- 4.3. Further Discussion of the Methodology -- 5. Concluding Comments -- References -- Chapter 11: Gaussian Rank Correlation and Regression -- 1. Introduction 2. Theoretical Background -- 2.1. Econometric Model -- 2.2. The Score Vector and the Hessian Matrix -- 2.3. Partial Correlation and Regression -- 3. Asymptotic Properties under Correct Specification -- 3.1. When Margins Are Known -- 3.1.1. Information Matrix Equality -- 3.1.2. Asymptotic Distribution of the ML Estimators -- 3.2. Replacing Margins with Empirical cdf's -- 3.3. Efficiency Comparison with Other Moment Estimators -- 3.3.1. Correlation Measures -- 3.3.2. Partial Correlation Coefficients and Regression -- 4. Misspecification Analysis -- 4.1. Pseudo-true Values -- 4.2. Asymptotic Distribution -- 5. Comparison with Alternative Estimators -- 5.1. Spearman Correlation -- 5.2. Pearson Correlation -- 5.3. Comparison -- 6. Monte Carlo Evidence -- 6.1. Design and Estimation Details -- 6.2. Sampling Distribution of the Different Estimators -- 6.3. Finite Sample Inference -- 6.4. The Effect of Outliers -- 7. Empirical Applications -- 7.1. Migration and Growth Rates -- 7.2. The Augmented Solow Growth Model -- 8. Conclusions and Directions for Further Research -- References -- Appendix A.Some Practical Considerations -- Chapter 12: Robust Dynamic Panel Data Models Using ε-Contamination -- 1. Introduction -- 2. A Robust Linear Dynamic Panel Data Model -- 2.1. The Static Framework -- 2.2. The Dynamic Framework -- 2.3. The Robust Dynamic Linear Model in the Two-stage Hierarchy -- 2.3.1. The First Step of the Robust Bayesian Estimator -- 2.3.2. The Second Step of the Robust Bayesian Estimator -- 2.4. Estimating the ML-II Posterior Variance-Covariance Matrix -- 3. Monte Carlo Simulation Study -- 3.1. The DGP of the Monte Carlo Simulation Study -- 3.1.1. The random effects World -- 3.1.2. The Chamberlain-type fixed effects World -- 3.1.3. The Hausman-Taylor World -- 3.1.4. The Dynamic Homogeneous Panel Data World with Common Trends 3.1.5. The Dynamic Homogeneous Panel Data World with Common Correlated Effects -- 3.1.6. The Dynamic Heterogeneous Panel Data World with Common Correlated Effects -- 4. Conclusion -- Notes -- References -- Chapter 13: Identification‐robust Inference for Endogeneity Parameters in Models with an Incomplete Reduced Form -- 1. Introduction -- 2. Framework and Notation -- 2.1. Basic Structural Framework -- 2.2. Notation -- 3. Asymptotic Assumptions -- 4. Two‐stage inference for endogeneity covariances -- 4.1. Inference for Structural Parameter β -- 4.2. Conditional Point Estimation of Endogeneity Covariances -- 4.3. Joint Inference for Structural Parameters and Endogeneity Covariances -- 4.4. Projection‐based Inference for Endogeneity Covariances -- 5. Inference for Total Effect -- 6. Exogeneity Tests -- 7. Application to Return‐to‐Schooling Model -- 7.1. Data -- 7.2. Results -- 8. Conclusion -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6846509 (ZDB-30-PAD)EBC6846509 (ZDB-89-EBL)EBL6846509 (OCoLC)1293241978 (DE-599)BVBBV049874187 |
dewey-full | 330.015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.015195 |
dewey-search | 330.015195 |
dewey-sort | 3330.015195 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV049874187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781802620658</subfield><subfield code="9">978-1-80262-065-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6846509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6846509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6846509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1293241978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049874187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QB 920</subfield><subfield code="0">(DE-625)141232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chudik, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Essays in Honor of M. Hashem Pesaran</subfield><subfield code="b">Panel Modeling, Micro Applications, and Econometric Methodology</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bingley</subfield><subfield code="b">Emerald Publishing Limited</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (372 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Econometrics Series</subfield><subfield code="v">v.43, Part B</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Half Title Page -- Series editors Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part B: Panel Modeling, Micro Applications, and Econometric Methodology -- Part B1. Panel Data Methods -- Part B2. Micro Modeling -- Part B3. Econometric Methodologies -- References -- Part B1: Panel Data Methods -- Chapter 1: A Panel Data Model With Generalized Higher-Order Network Effects -- 1. Introduction -- 2. Model -- 2.1. Notation and Outline -- 2.2. Key Assumptions -- 3. Monte Carlo simulations -- 3.1. Design -- 3.2. Results -- 3.3. Likelihood-Ratio Tests -- 4. Conclusions -- References -- Chapter 2: Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects -- 1. Introduction -- 2. Spatial and Spatio-Temporal Error Correction Models -- 3. Spatio-Temporal ECM, Common Correlated Effects and Weak Dependence -- 4. An Application to House Prices in the UK -- 4.1. Economic Model -- 4.2. Data -- 4.3. Discussion of Results -- 5. Conclusion -- Acknowledgments -- References -- Appendix: Estimation Steps -- Chapter 3: Heterogeneity and Dynamic Dependence in Panel Analysis of Individual Behavior -- 1. Introduction -- 2. Dynamic Response Path of Labor Participation Decision to a Health Shock -- Parameter Heterogeneity (Stability) of a State-Dependent Model -- Concluding Remarks -- References -- Appendix -- A Cohort Approach to Estimate Fixed Individual-Specific Effects for a Dynamic Binary State-Dependent Model -- Chapter 4: Multiple Treatment Effects in Panel-Heterogeneity and Aggregation -- 1. Introduction -- 2. Measurement of Treatment Effects and Sample Configuration -- 3. Homogeneous or Heterogeneous Treatment Effects -- 4. Aggregation Methods -- 5. To Aggregate or Not -- 5.1. Criterion -- 5.2. Test of Significance between the Aggregate and Disaggregate Approaches</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Test 1: Diebold and Mariano (1995) Asymptotic Test -- Test 2. The Sign Test -- Test 3. The Wilcoxon's Signed-Rank Test -- 6. Monte Carlo Simulation -- 7. Analysis of China's P2P Market -- 7.1. A Brief History -- 7.2. The Model and the Data -- 8. Conclusion -- References -- Chapter 5: Backward Mean Transformation in Panel Data with Predetermined Regressors -- 1. Introduction -- 2. The Model -- 3. Asymptotic Theory -- 3.1. Stationary Setup -- 3.2. Mean Non-stationarity -- 3.3. A Stylized Autoregressive Model -- 4. Other Approaches Based on Backward Means -- 4.1. Bias-Corrected OBM -- 4.2. OLS-IV Estimator of Everaert (2013) -- 4.3. Other Hybrid OLS-IV Estimators -- 4.4. Explanatory Notes on Everaert (2013) -- 5. Finite Sample Results -- 6. Concluding Remarks -- References -- Appendix. Tables: Monte Carlo Results for the Dynamic Model -- Chapter 6: Various Asymptotic Distributions of the Error-Components Test for Cross-Sectional Correlation -- Introduction -- 2. A Review on the Double-Indexed CLT -- 3. Testing for Cross-Sectional Correlation -- 3.1. The Conventional Test Statistic -- 3.2. A Modified Test Statistic -- 3.3. Simulating the Critical Values for Fixed T, Equation (17) -- 4. A Monte Carlo Experiment -- References -- Appendix: Technical Proofs -- Chapter 7: Trimmed Mean Group Estimation -- 1. Introduction -- 2. Motivation -- 2.1. Weighted Mean Group Estimation -- 2.2. Trimming Based on the Variances of Regressors -- 2.3. Examples -- 2.4. Trimming Weights -- 3. Trimmed Mean Group Estimation -- 3.1. Trimmed MG Estimator for Two‐Way FE Models -- 3.2. Trimmed CCEMG Estimator -- 4. Monte Carlo Simulation -- 5. Empirical Illustration: Effect of Police on Crime -- 6. Concluding Remarks -- References -- Part B2: Micro Modeling -- Chapter 8: Corporate Indebtedness and Low Productivity Growth of Italian Firms -- 1. Introduction -- 2. Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Descriptive Statistics -- 3.1. Coverage -- 3.2. Evolution of Firm Indebtedness -- 3.3. Firm Productivity -- 4. Empirical Framework -- 4.1. Auto-Regressive Distributed Lag (ARDL) Approach -- 4.1.1. Estimation and Panel Tests of Threshold Effects -- 4.2. Distributed Lag (DL) Approach -- 4.3. Cross-Sectionally Augmented ARDL and DL Approaches -- 5. Results -- 5.1. Estimates of Long-Run Effects -- 5.2. Tests of Corporate-Debt Threshold Effects -- 5.3. Economic Significance -- 6. Conclusion -- References -- Chapter 9: Women's Potential Earnings Distributions -- 1. Introduction -- 2. Empirical Methods -- 2.1. Basic Notations -- 2.2. Comparing Two Distributions: Entropy‐Based Measures and Stochastic Dominance Tests -- 2.2.1. Entropy‐Based Measures -- 2.2.2. Stochastic Dominance -- 2.3. Identification and Estimation of Counterfactual Distributions -- 2.3.1. Without Selection -- 2.3.2. Accounting for Selection -- 3. Data -- 4. Baseline Results -- 4.1. Female Wage Versus Counterfactual Distribution #1 -- 4.1.1. Entropy and Conventional Measures of the Differences -- 4.1.2. Stochastic Dominance Test Results -- 4.2. Female Wage Versus Counterfactual Distribution #2 -- 5. Results Addressing Selection -- 6. Conclusions -- References -- Part B3: Econometric Methodologies -- Chapter 10: Where (and by How Much) Does a Theory Break Down? With an Application to the Expectation Hypothesis -- 1. Introduction -- 2. The EH: Implied Relations and Previous Findings -- 3. NP Evidence: Where Do the Violations of the EH Come From? -- 4. The Last Straw: How Many Observations Cause the Rejection of the Hypothesis? -- 4.1. RLS on the Sorted Data -- 4.2. LS with Sequential Thresholds, on the Original Data -- 4.3. Further Discussion of the Methodology -- 5. Concluding Comments -- References -- Chapter 11: Gaussian Rank Correlation and Regression -- 1. Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Theoretical Background -- 2.1. Econometric Model -- 2.2. The Score Vector and the Hessian Matrix -- 2.3. Partial Correlation and Regression -- 3. Asymptotic Properties under Correct Specification -- 3.1. When Margins Are Known -- 3.1.1. Information Matrix Equality -- 3.1.2. Asymptotic Distribution of the ML Estimators -- 3.2. Replacing Margins with Empirical cdf's -- 3.3. Efficiency Comparison with Other Moment Estimators -- 3.3.1. Correlation Measures -- 3.3.2. Partial Correlation Coefficients and Regression -- 4. Misspecification Analysis -- 4.1. Pseudo-true Values -- 4.2. Asymptotic Distribution -- 5. Comparison with Alternative Estimators -- 5.1. Spearman Correlation -- 5.2. Pearson Correlation -- 5.3. Comparison -- 6. Monte Carlo Evidence -- 6.1. Design and Estimation Details -- 6.2. Sampling Distribution of the Different Estimators -- 6.3. Finite Sample Inference -- 6.4. The Effect of Outliers -- 7. Empirical Applications -- 7.1. Migration and Growth Rates -- 7.2. The Augmented Solow Growth Model -- 8. Conclusions and Directions for Further Research -- References -- Appendix A.Some Practical Considerations -- Chapter 12: Robust Dynamic Panel Data Models Using ε-Contamination -- 1. Introduction -- 2. A Robust Linear Dynamic Panel Data Model -- 2.1. The Static Framework -- 2.2. The Dynamic Framework -- 2.3. The Robust Dynamic Linear Model in the Two-stage Hierarchy -- 2.3.1. The First Step of the Robust Bayesian Estimator -- 2.3.2. The Second Step of the Robust Bayesian Estimator -- 2.4. Estimating the ML-II Posterior Variance-Covariance Matrix -- 3. Monte Carlo Simulation Study -- 3.1. The DGP of the Monte Carlo Simulation Study -- 3.1.1. The random effects World -- 3.1.2. The Chamberlain-type fixed effects World -- 3.1.3. The Hausman-Taylor World -- 3.1.4. The Dynamic Homogeneous Panel Data World with Common Trends</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.5. The Dynamic Homogeneous Panel Data World with Common Correlated Effects -- 3.1.6. The Dynamic Heterogeneous Panel Data World with Common Correlated Effects -- 4. Conclusion -- Notes -- References -- Chapter 13: Identification‐robust Inference for Endogeneity Parameters in Models with an Incomplete Reduced Form -- 1. Introduction -- 2. Framework and Notation -- 2.1. Basic Structural Framework -- 2.2. Notation -- 3. Asymptotic Assumptions -- 4. Two‐stage inference for endogeneity covariances -- 4.1. Inference for Structural Parameter β -- 4.2. Conditional Point Estimation of Endogeneity Covariances -- 4.3. Joint Inference for Structural Parameters and Endogeneity Covariances -- 4.4. Projection‐based Inference for Endogeneity Covariances -- 5. Inference for Total Effect -- 6. Exogeneity Tests -- 7. Application to Return‐to‐Schooling Model -- 7.1. Data -- 7.2. Results -- 8. Conclusion -- References -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The collection of chapters in Volume 43 Part B of Advances in Econometricsserves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Makroökonomisches Modell</subfield><subfield code="0">(DE-588)4074486-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Makroökonomisches Modell</subfield><subfield code="0">(DE-588)4074486-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsiao, Cheng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timmermann, Allan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Chudik, Alexander</subfield><subfield code="t">Essays in Honor of M. Hashem Pesaran</subfield><subfield code="d">Bingley : Emerald Publishing Limited,c2022</subfield><subfield code="z">9781802620665</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035213645</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6846509</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4016928-5 Festschrift gnd-content |
genre_facet | Festschrift |
id | DE-604.BV049874187 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T19:04:05Z |
institution | BVB |
isbn | 9781802620658 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035213645 |
oclc_num | 1293241978 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (372 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Emerald Publishing Limited |
record_format | marc |
series2 | Advances in Econometrics Series |
spelling | Chudik, Alexander Verfasser aut Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology 1st ed Bingley Emerald Publishing Limited 2022 ©2022 1 Online-Ressource (372 Seiten) txt rdacontent c rdamedia cr rdacarrier Advances in Econometrics Series v.43, Part B Description based on publisher supplied metadata and other sources Intro -- Half Title Page -- Series editors Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part B: Panel Modeling, Micro Applications, and Econometric Methodology -- Part B1. Panel Data Methods -- Part B2. Micro Modeling -- Part B3. Econometric Methodologies -- References -- Part B1: Panel Data Methods -- Chapter 1: A Panel Data Model With Generalized Higher-Order Network Effects -- 1. Introduction -- 2. Model -- 2.1. Notation and Outline -- 2.2. Key Assumptions -- 3. Monte Carlo simulations -- 3.1. Design -- 3.2. Results -- 3.3. Likelihood-Ratio Tests -- 4. Conclusions -- References -- Chapter 2: Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects -- 1. Introduction -- 2. Spatial and Spatio-Temporal Error Correction Models -- 3. Spatio-Temporal ECM, Common Correlated Effects and Weak Dependence -- 4. An Application to House Prices in the UK -- 4.1. Economic Model -- 4.2. Data -- 4.3. Discussion of Results -- 5. Conclusion -- Acknowledgments -- References -- Appendix: Estimation Steps -- Chapter 3: Heterogeneity and Dynamic Dependence in Panel Analysis of Individual Behavior -- 1. Introduction -- 2. Dynamic Response Path of Labor Participation Decision to a Health Shock -- Parameter Heterogeneity (Stability) of a State-Dependent Model -- Concluding Remarks -- References -- Appendix -- A Cohort Approach to Estimate Fixed Individual-Specific Effects for a Dynamic Binary State-Dependent Model -- Chapter 4: Multiple Treatment Effects in Panel-Heterogeneity and Aggregation -- 1. Introduction -- 2. Measurement of Treatment Effects and Sample Configuration -- 3. Homogeneous or Heterogeneous Treatment Effects -- 4. Aggregation Methods -- 5. To Aggregate or Not -- 5.1. Criterion -- 5.2. Test of Significance between the Aggregate and Disaggregate Approaches Test 1: Diebold and Mariano (1995) Asymptotic Test -- Test 2. The Sign Test -- Test 3. The Wilcoxon's Signed-Rank Test -- 6. Monte Carlo Simulation -- 7. Analysis of China's P2P Market -- 7.1. A Brief History -- 7.2. The Model and the Data -- 8. Conclusion -- References -- Chapter 5: Backward Mean Transformation in Panel Data with Predetermined Regressors -- 1. Introduction -- 2. The Model -- 3. Asymptotic Theory -- 3.1. Stationary Setup -- 3.2. Mean Non-stationarity -- 3.3. A Stylized Autoregressive Model -- 4. Other Approaches Based on Backward Means -- 4.1. Bias-Corrected OBM -- 4.2. OLS-IV Estimator of Everaert (2013) -- 4.3. Other Hybrid OLS-IV Estimators -- 4.4. Explanatory Notes on Everaert (2013) -- 5. Finite Sample Results -- 6. Concluding Remarks -- References -- Appendix. Tables: Monte Carlo Results for the Dynamic Model -- Chapter 6: Various Asymptotic Distributions of the Error-Components Test for Cross-Sectional Correlation -- Introduction -- 2. A Review on the Double-Indexed CLT -- 3. Testing for Cross-Sectional Correlation -- 3.1. The Conventional Test Statistic -- 3.2. A Modified Test Statistic -- 3.3. Simulating the Critical Values for Fixed T, Equation (17) -- 4. A Monte Carlo Experiment -- References -- Appendix: Technical Proofs -- Chapter 7: Trimmed Mean Group Estimation -- 1. Introduction -- 2. Motivation -- 2.1. Weighted Mean Group Estimation -- 2.2. Trimming Based on the Variances of Regressors -- 2.3. Examples -- 2.4. Trimming Weights -- 3. Trimmed Mean Group Estimation -- 3.1. Trimmed MG Estimator for Two‐Way FE Models -- 3.2. Trimmed CCEMG Estimator -- 4. Monte Carlo Simulation -- 5. Empirical Illustration: Effect of Police on Crime -- 6. Concluding Remarks -- References -- Part B2: Micro Modeling -- Chapter 8: Corporate Indebtedness and Low Productivity Growth of Italian Firms -- 1. Introduction -- 2. Data 3. Descriptive Statistics -- 3.1. Coverage -- 3.2. Evolution of Firm Indebtedness -- 3.3. Firm Productivity -- 4. Empirical Framework -- 4.1. Auto-Regressive Distributed Lag (ARDL) Approach -- 4.1.1. Estimation and Panel Tests of Threshold Effects -- 4.2. Distributed Lag (DL) Approach -- 4.3. Cross-Sectionally Augmented ARDL and DL Approaches -- 5. Results -- 5.1. Estimates of Long-Run Effects -- 5.2. Tests of Corporate-Debt Threshold Effects -- 5.3. Economic Significance -- 6. Conclusion -- References -- Chapter 9: Women's Potential Earnings Distributions -- 1. Introduction -- 2. Empirical Methods -- 2.1. Basic Notations -- 2.2. Comparing Two Distributions: Entropy‐Based Measures and Stochastic Dominance Tests -- 2.2.1. Entropy‐Based Measures -- 2.2.2. Stochastic Dominance -- 2.3. Identification and Estimation of Counterfactual Distributions -- 2.3.1. Without Selection -- 2.3.2. Accounting for Selection -- 3. Data -- 4. Baseline Results -- 4.1. Female Wage Versus Counterfactual Distribution #1 -- 4.1.1. Entropy and Conventional Measures of the Differences -- 4.1.2. Stochastic Dominance Test Results -- 4.2. Female Wage Versus Counterfactual Distribution #2 -- 5. Results Addressing Selection -- 6. Conclusions -- References -- Part B3: Econometric Methodologies -- Chapter 10: Where (and by How Much) Does a Theory Break Down? With an Application to the Expectation Hypothesis -- 1. Introduction -- 2. The EH: Implied Relations and Previous Findings -- 3. NP Evidence: Where Do the Violations of the EH Come From? -- 4. The Last Straw: How Many Observations Cause the Rejection of the Hypothesis? -- 4.1. RLS on the Sorted Data -- 4.2. LS with Sequential Thresholds, on the Original Data -- 4.3. Further Discussion of the Methodology -- 5. Concluding Comments -- References -- Chapter 11: Gaussian Rank Correlation and Regression -- 1. Introduction 2. Theoretical Background -- 2.1. Econometric Model -- 2.2. The Score Vector and the Hessian Matrix -- 2.3. Partial Correlation and Regression -- 3. Asymptotic Properties under Correct Specification -- 3.1. When Margins Are Known -- 3.1.1. Information Matrix Equality -- 3.1.2. Asymptotic Distribution of the ML Estimators -- 3.2. Replacing Margins with Empirical cdf's -- 3.3. Efficiency Comparison with Other Moment Estimators -- 3.3.1. Correlation Measures -- 3.3.2. Partial Correlation Coefficients and Regression -- 4. Misspecification Analysis -- 4.1. Pseudo-true Values -- 4.2. Asymptotic Distribution -- 5. Comparison with Alternative Estimators -- 5.1. Spearman Correlation -- 5.2. Pearson Correlation -- 5.3. Comparison -- 6. Monte Carlo Evidence -- 6.1. Design and Estimation Details -- 6.2. Sampling Distribution of the Different Estimators -- 6.3. Finite Sample Inference -- 6.4. The Effect of Outliers -- 7. Empirical Applications -- 7.1. Migration and Growth Rates -- 7.2. The Augmented Solow Growth Model -- 8. Conclusions and Directions for Further Research -- References -- Appendix A.Some Practical Considerations -- Chapter 12: Robust Dynamic Panel Data Models Using ε-Contamination -- 1. Introduction -- 2. A Robust Linear Dynamic Panel Data Model -- 2.1. The Static Framework -- 2.2. The Dynamic Framework -- 2.3. The Robust Dynamic Linear Model in the Two-stage Hierarchy -- 2.3.1. The First Step of the Robust Bayesian Estimator -- 2.3.2. The Second Step of the Robust Bayesian Estimator -- 2.4. Estimating the ML-II Posterior Variance-Covariance Matrix -- 3. Monte Carlo Simulation Study -- 3.1. The DGP of the Monte Carlo Simulation Study -- 3.1.1. The random effects World -- 3.1.2. The Chamberlain-type fixed effects World -- 3.1.3. The Hausman-Taylor World -- 3.1.4. The Dynamic Homogeneous Panel Data World with Common Trends 3.1.5. The Dynamic Homogeneous Panel Data World with Common Correlated Effects -- 3.1.6. The Dynamic Heterogeneous Panel Data World with Common Correlated Effects -- 4. Conclusion -- Notes -- References -- Chapter 13: Identification‐robust Inference for Endogeneity Parameters in Models with an Incomplete Reduced Form -- 1. Introduction -- 2. Framework and Notation -- 2.1. Basic Structural Framework -- 2.2. Notation -- 3. Asymptotic Assumptions -- 4. Two‐stage inference for endogeneity covariances -- 4.1. Inference for Structural Parameter β -- 4.2. Conditional Point Estimation of Endogeneity Covariances -- 4.3. Joint Inference for Structural Parameters and Endogeneity Covariances -- 4.4. Projection‐based Inference for Endogeneity Covariances -- 5. Inference for Total Effect -- 6. Exogeneity Tests -- 7. Application to Return‐to‐Schooling Model -- 7.1. Data -- 7.2. Results -- 8. Conclusion -- References -- Index The collection of chapters in Volume 43 Part B of Advances in Econometricsserves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran Econometrics Makroökonomisches Modell (DE-588)4074486-3 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Ökonometrie (DE-588)4132280-0 gnd rswk-swf (DE-588)4016928-5 Festschrift gnd-content Ökonometrie (DE-588)4132280-0 s Makroökonomisches Modell (DE-588)4074486-3 s Prognose (DE-588)4047390-9 s DE-604 Hsiao, Cheng Sonstige oth Timmermann, Allan Sonstige oth Erscheint auch als Druck-Ausgabe Chudik, Alexander Essays in Honor of M. Hashem Pesaran Bingley : Emerald Publishing Limited,c2022 9781802620665 |
spellingShingle | Chudik, Alexander Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology Intro -- Half Title Page -- Series editors Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part B: Panel Modeling, Micro Applications, and Econometric Methodology -- Part B1. Panel Data Methods -- Part B2. Micro Modeling -- Part B3. Econometric Methodologies -- References -- Part B1: Panel Data Methods -- Chapter 1: A Panel Data Model With Generalized Higher-Order Network Effects -- 1. Introduction -- 2. Model -- 2.1. Notation and Outline -- 2.2. Key Assumptions -- 3. Monte Carlo simulations -- 3.1. Design -- 3.2. Results -- 3.3. Likelihood-Ratio Tests -- 4. Conclusions -- References -- Chapter 2: Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects -- 1. Introduction -- 2. Spatial and Spatio-Temporal Error Correction Models -- 3. Spatio-Temporal ECM, Common Correlated Effects and Weak Dependence -- 4. An Application to House Prices in the UK -- 4.1. Economic Model -- 4.2. Data -- 4.3. Discussion of Results -- 5. Conclusion -- Acknowledgments -- References -- Appendix: Estimation Steps -- Chapter 3: Heterogeneity and Dynamic Dependence in Panel Analysis of Individual Behavior -- 1. Introduction -- 2. Dynamic Response Path of Labor Participation Decision to a Health Shock -- Parameter Heterogeneity (Stability) of a State-Dependent Model -- Concluding Remarks -- References -- Appendix -- A Cohort Approach to Estimate Fixed Individual-Specific Effects for a Dynamic Binary State-Dependent Model -- Chapter 4: Multiple Treatment Effects in Panel-Heterogeneity and Aggregation -- 1. Introduction -- 2. Measurement of Treatment Effects and Sample Configuration -- 3. Homogeneous or Heterogeneous Treatment Effects -- 4. Aggregation Methods -- 5. To Aggregate or Not -- 5.1. Criterion -- 5.2. Test of Significance between the Aggregate and Disaggregate Approaches Test 1: Diebold and Mariano (1995) Asymptotic Test -- Test 2. The Sign Test -- Test 3. The Wilcoxon's Signed-Rank Test -- 6. Monte Carlo Simulation -- 7. Analysis of China's P2P Market -- 7.1. A Brief History -- 7.2. The Model and the Data -- 8. Conclusion -- References -- Chapter 5: Backward Mean Transformation in Panel Data with Predetermined Regressors -- 1. Introduction -- 2. The Model -- 3. Asymptotic Theory -- 3.1. Stationary Setup -- 3.2. Mean Non-stationarity -- 3.3. A Stylized Autoregressive Model -- 4. Other Approaches Based on Backward Means -- 4.1. Bias-Corrected OBM -- 4.2. OLS-IV Estimator of Everaert (2013) -- 4.3. Other Hybrid OLS-IV Estimators -- 4.4. Explanatory Notes on Everaert (2013) -- 5. Finite Sample Results -- 6. Concluding Remarks -- References -- Appendix. Tables: Monte Carlo Results for the Dynamic Model -- Chapter 6: Various Asymptotic Distributions of the Error-Components Test for Cross-Sectional Correlation -- Introduction -- 2. A Review on the Double-Indexed CLT -- 3. Testing for Cross-Sectional Correlation -- 3.1. The Conventional Test Statistic -- 3.2. A Modified Test Statistic -- 3.3. Simulating the Critical Values for Fixed T, Equation (17) -- 4. A Monte Carlo Experiment -- References -- Appendix: Technical Proofs -- Chapter 7: Trimmed Mean Group Estimation -- 1. Introduction -- 2. Motivation -- 2.1. Weighted Mean Group Estimation -- 2.2. Trimming Based on the Variances of Regressors -- 2.3. Examples -- 2.4. Trimming Weights -- 3. Trimmed Mean Group Estimation -- 3.1. Trimmed MG Estimator for Two‐Way FE Models -- 3.2. Trimmed CCEMG Estimator -- 4. Monte Carlo Simulation -- 5. Empirical Illustration: Effect of Police on Crime -- 6. Concluding Remarks -- References -- Part B2: Micro Modeling -- Chapter 8: Corporate Indebtedness and Low Productivity Growth of Italian Firms -- 1. Introduction -- 2. Data 3. Descriptive Statistics -- 3.1. Coverage -- 3.2. Evolution of Firm Indebtedness -- 3.3. Firm Productivity -- 4. Empirical Framework -- 4.1. Auto-Regressive Distributed Lag (ARDL) Approach -- 4.1.1. Estimation and Panel Tests of Threshold Effects -- 4.2. Distributed Lag (DL) Approach -- 4.3. Cross-Sectionally Augmented ARDL and DL Approaches -- 5. Results -- 5.1. Estimates of Long-Run Effects -- 5.2. Tests of Corporate-Debt Threshold Effects -- 5.3. Economic Significance -- 6. Conclusion -- References -- Chapter 9: Women's Potential Earnings Distributions -- 1. Introduction -- 2. Empirical Methods -- 2.1. Basic Notations -- 2.2. Comparing Two Distributions: Entropy‐Based Measures and Stochastic Dominance Tests -- 2.2.1. Entropy‐Based Measures -- 2.2.2. Stochastic Dominance -- 2.3. Identification and Estimation of Counterfactual Distributions -- 2.3.1. Without Selection -- 2.3.2. Accounting for Selection -- 3. Data -- 4. Baseline Results -- 4.1. Female Wage Versus Counterfactual Distribution #1 -- 4.1.1. Entropy and Conventional Measures of the Differences -- 4.1.2. Stochastic Dominance Test Results -- 4.2. Female Wage Versus Counterfactual Distribution #2 -- 5. Results Addressing Selection -- 6. Conclusions -- References -- Part B3: Econometric Methodologies -- Chapter 10: Where (and by How Much) Does a Theory Break Down? With an Application to the Expectation Hypothesis -- 1. Introduction -- 2. The EH: Implied Relations and Previous Findings -- 3. NP Evidence: Where Do the Violations of the EH Come From? -- 4. The Last Straw: How Many Observations Cause the Rejection of the Hypothesis? -- 4.1. RLS on the Sorted Data -- 4.2. LS with Sequential Thresholds, on the Original Data -- 4.3. Further Discussion of the Methodology -- 5. Concluding Comments -- References -- Chapter 11: Gaussian Rank Correlation and Regression -- 1. Introduction 2. Theoretical Background -- 2.1. Econometric Model -- 2.2. The Score Vector and the Hessian Matrix -- 2.3. Partial Correlation and Regression -- 3. Asymptotic Properties under Correct Specification -- 3.1. When Margins Are Known -- 3.1.1. Information Matrix Equality -- 3.1.2. Asymptotic Distribution of the ML Estimators -- 3.2. Replacing Margins with Empirical cdf's -- 3.3. Efficiency Comparison with Other Moment Estimators -- 3.3.1. Correlation Measures -- 3.3.2. Partial Correlation Coefficients and Regression -- 4. Misspecification Analysis -- 4.1. Pseudo-true Values -- 4.2. Asymptotic Distribution -- 5. Comparison with Alternative Estimators -- 5.1. Spearman Correlation -- 5.2. Pearson Correlation -- 5.3. Comparison -- 6. Monte Carlo Evidence -- 6.1. Design and Estimation Details -- 6.2. Sampling Distribution of the Different Estimators -- 6.3. Finite Sample Inference -- 6.4. The Effect of Outliers -- 7. Empirical Applications -- 7.1. Migration and Growth Rates -- 7.2. The Augmented Solow Growth Model -- 8. Conclusions and Directions for Further Research -- References -- Appendix A.Some Practical Considerations -- Chapter 12: Robust Dynamic Panel Data Models Using ε-Contamination -- 1. Introduction -- 2. A Robust Linear Dynamic Panel Data Model -- 2.1. The Static Framework -- 2.2. The Dynamic Framework -- 2.3. The Robust Dynamic Linear Model in the Two-stage Hierarchy -- 2.3.1. The First Step of the Robust Bayesian Estimator -- 2.3.2. The Second Step of the Robust Bayesian Estimator -- 2.4. Estimating the ML-II Posterior Variance-Covariance Matrix -- 3. Monte Carlo Simulation Study -- 3.1. The DGP of the Monte Carlo Simulation Study -- 3.1.1. The random effects World -- 3.1.2. The Chamberlain-type fixed effects World -- 3.1.3. The Hausman-Taylor World -- 3.1.4. The Dynamic Homogeneous Panel Data World with Common Trends 3.1.5. The Dynamic Homogeneous Panel Data World with Common Correlated Effects -- 3.1.6. The Dynamic Heterogeneous Panel Data World with Common Correlated Effects -- 4. Conclusion -- Notes -- References -- Chapter 13: Identification‐robust Inference for Endogeneity Parameters in Models with an Incomplete Reduced Form -- 1. Introduction -- 2. Framework and Notation -- 2.1. Basic Structural Framework -- 2.2. Notation -- 3. Asymptotic Assumptions -- 4. Two‐stage inference for endogeneity covariances -- 4.1. Inference for Structural Parameter β -- 4.2. Conditional Point Estimation of Endogeneity Covariances -- 4.3. Joint Inference for Structural Parameters and Endogeneity Covariances -- 4.4. Projection‐based Inference for Endogeneity Covariances -- 5. Inference for Total Effect -- 6. Exogeneity Tests -- 7. Application to Return‐to‐Schooling Model -- 7.1. Data -- 7.2. Results -- 8. Conclusion -- References -- Index Econometrics Makroökonomisches Modell (DE-588)4074486-3 gnd Prognose (DE-588)4047390-9 gnd Ökonometrie (DE-588)4132280-0 gnd |
subject_GND | (DE-588)4074486-3 (DE-588)4047390-9 (DE-588)4132280-0 (DE-588)4016928-5 |
title | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_auth | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_exact_search | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_full | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_fullStr | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_full_unstemmed | Essays in Honor of M. Hashem Pesaran Panel Modeling, Micro Applications, and Econometric Methodology |
title_short | Essays in Honor of M. Hashem Pesaran |
title_sort | essays in honor of m hashem pesaran panel modeling micro applications and econometric methodology |
title_sub | Panel Modeling, Micro Applications, and Econometric Methodology |
topic | Econometrics Makroökonomisches Modell (DE-588)4074486-3 gnd Prognose (DE-588)4047390-9 gnd Ökonometrie (DE-588)4132280-0 gnd |
topic_facet | Econometrics Makroökonomisches Modell Prognose Ökonometrie Festschrift |
work_keys_str_mv | AT chudikalexander essaysinhonorofmhashempesaranpanelmodelingmicroapplicationsandeconometricmethodology AT hsiaocheng essaysinhonorofmhashempesaranpanelmodelingmicroapplicationsandeconometricmethodology AT timmermannallan essaysinhonorofmhashempesaranpanelmodelingmicroapplicationsandeconometricmethodology |