Data cleaning with Power BI: the definitive guide to transforming dirty data into actionable insights
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2024
|
Ausgabe: | 1st edition |
Schlagworte: | |
Online-Zugang: | DE-2070s DE-91 DE-706 Volltext |
Beschreibung: | 1 Online-Ressource (340 Seiten) |
ISBN: | 9781805126058 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049873813 | ||
003 | DE-604 | ||
005 | 20241209 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2024 xx o|||| 00||| eng d | ||
020 | |a 9781805126058 |9 978-1-80512-605-8 | ||
035 | |a (ZDB-30-PQE)EBC31195583 | ||
035 | |a (ZDB-30-PAD)EBC31195583 | ||
035 | |a (ZDB-89-EBL)EBL31195583 | ||
035 | |a (OCoLC)1424950496 | ||
035 | |a (DE-599)BVBBV049873813 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s |a DE-706 |a DE-91 | ||
082 | 0 | |a 005.369 | |
100 | 1 | |a Frazer, Gus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data cleaning with Power BI |b the definitive guide to transforming dirty data into actionable insights |
250 | |a 1st edition | ||
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2024 | |
264 | 4 | |c © 2024 | |
300 | |a 1 Online-Ressource (340 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Data mining-Computer programs | |
650 | 4 | |a Information visualization-Computer programs | |
650 | 4 | |a Visual analytics | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Frazer, Gus |t Data Cleaning with Power BI |d Birmingham : Packt Publishing, Limited,c2024 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0007091.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035213271 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31195583 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007091.html |l DE-91 |p ZDB-221-PDA |q TUM_Paketkauf_2025 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007091.html |l DE-706 |p ZDB-221-PDA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817968388091150336 |
---|---|
adam_text | |
any_adam_object | |
author | Frazer, Gus |
author_facet | Frazer, Gus |
author_role | aut |
author_sort | Frazer, Gus |
author_variant | g f gf |
building | Verbundindex |
bvnumber | BV049873813 |
collection | ZDB-30-PQE ZDB-221-PDA |
contents | Cover -- Title Page -- Copyright and Credits -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1 - Introduction and Fundamentals -- Chapter 1: Introduction to Power BI Data Cleaning -- Technical requirements -- Cleaning your data in Power BI -- Understanding Power Query -- Understanding DAX -- Where do we begin with data? -- Summary -- Questions -- Chapter 2: Understanding Data Quality and Why Data Cleaning is Important -- What is data quality? -- Where do data quality issues come from? -- The role of data cleaning in improving data quality -- Data integrity and accuracy -- Decision-making and business outcomes -- Data ownership and accountability -- A holistic view of the data ecosystem -- Early detection of issues -- Continuous improvement and learning -- Empowerment and collaboration -- Best practices for data quality overall -- Establishing data quality standards -- Summary -- Questions -- Chapter 3: Data Cleaning Fundamentals and Principles -- Defining data cleaning -- Who's responsible for cleaning data? -- Building a process for cleaning data -- Data assessment -- Data profiling -- Data validation -- Data cleaning strategies -- Data transformations -- Data quality assurance -- Documentation -- Understanding quality over quantity in data cleaning -- Summary -- Questions -- Chapter 4: The Most Common Data Cleaning Operations -- Technical requirements -- Removing duplicates -- Removing missing data -- Splitting columns -- Merging columns -- Replacing values -- Creating calculated columns versus measures -- Calculated columns -- Measures -- Calculation group -- Considerations -- Summary -- Questions -- Part 2 - Data Import and Query Editor -- Chapter 5: Importing Data into Power BI -- Technical requirements -- Understanding data completeness -- Understanding data accuracy -- Understanding data consistency Assessing data relevance -- Assessing data formatting -- Assessing data normalization, denormalization, and star schemas -- Dimension modeling and star schema -- Denormalized data in dimension tables -- Summary -- Questions -- Chapter 6: Cleaning Data with Query Editor -- Technical requirements -- Understanding the Query Editor interface -- Data cleaning techniques and functions -- Adding columns -- Data type conversions -- Date/time -- Rounding -- Pivot/unpivot columns -- Merge queries -- Using Query Editor versus DAX for transformation -- Power Query Editor -- Data Analysis Expressions (DAX) -- Workflow -- Summary -- Questions -- Further reading -- Chapter 7: Transforming Data with the M Language -- Technical requirements -- Understanding the M language -- Structure of M -- Common use cases of M -- Filtering and sorting data with M -- Transforming data with M -- Working with data sources in M -- Creating parameters and variables -- Summary -- Questions -- Chapter 8: Using Data Profiling for Exploratory Data Analysis (EDA) -- Understanding EDA -- Exploring data profiling features in Power BI -- Reviewing column quality, distribution, and profile -- Column distribution -- Column quality -- Column profile -- Turning data profiles into high-quality data -- Recommended actions on column distribution -- Value distribution -- Summary -- Questions -- Part 3 - Advanced Data Cleaning and Optimizations -- Chapter 9: Advanced Data Cleaning Techniques -- Technical requirements -- Using Power Query Editor from within Dataflow Gen1 - fuzzy matching and fill down -- Fuzzy matching -- Fill down -- Best practices for using fuzzy matching and fill down -- Using R and Python scripts -- Benefits of using R or Python scripts -- Getting started with using R or Python scripts in Power BI -- Using ML to clean data -- Data cleaning with anomaly detection Data preparation with AutoML -- Data enhancement with AI Insights -- Summary -- Questions -- Chapter 10: Creating Custom Functions in Power Query -- Planning for your custom function -- Defining the problem -- Identifying parameters -- Setting clear objectives -- Using parameters -- Types of parameters -- Defining parameters -- Best practices for using parameters -- Creating custom functions -- Defining the function structure -- Writing M code -- Testing and debugging -- Documentation -- Summary -- Questions -- Chapter 11: M Query Optimization -- Technical requirements -- Creating custom functions -- Filtering and reducing data -- Using native M functions -- Optimizing memory usage -- Parallel query execution -- Using Table.Buffer and Table.Split -- Summary -- Questions -- Further reading -- Chapter 12: Data Modeling and Managing Relationships -- Understanding the basics of data modeling -- Importing versus DirectQuery -- Dimensional modeling -- Snowflake schema -- Intermediate tables -- Calendars and date tables -- Role-playing dimensions -- Aggregating tables -- Incremental refreshes -- Using bidirectional cross-filtering -- What is bidirectional cross-filtering? -- Best practices for bidirectional cross-filtering -- Understanding what's the right cardinality -- Understanding cardinality -- Why cardinality matters -- Choosing the right cardinality -- Handling large and complex datasets -- Understanding big data -- Challenges of working with big data in Power BI -- Best practices for handling big data -- Avoiding circular references -- Understanding circular references -- Best practices for avoiding circular references -- Summary -- Questions -- Further reading -- Part 4 - Paginated Reports, Automations, and OpenAI -- Chapter 13: Preparing Data for Paginated Reporting -- Technical requirements -- Understanding the importance of paginated reports Connecting to data sources within Power BI Report Builder -- Data preparation -- Query -- Fields -- Options -- Filters -- Parameters -- Creating a dataset example -- Using filters and parameters -- Using row groups/column groups -- Organizing and structuring data -- Enhancing readability and presentation -- Summary -- Questions -- Chapter 14: Automating Data Cleaning Tasks with Power Automate -- Technical requirements -- Handling triggers for automation -- Automating notifications -- Automating refreshing of data -- Creating snapshots (temporary tables) of cleaned data -- Best practices with Power Automate -- Summary -- Questions -- Further reading -- Chapter 15: Making Life Easier with OpenAI -- Optimizing efficiency with OpenAI, ChatGPT, and DAX -- Using OpenAI for M queries -- Using Microsoft Copilot -- Tackling challenges with AI -- Summary -- Questions -- Further reading -- Putting it together -- Assessments -- Chapter 1 - Introduction to Power BI Data Cleaning -- Chapter 2 - Understanding Data Quality and Why Data Cleaning is Important -- Chapter 3 - Data Cleaning Fundamentals and Principles -- Chapter 4 - The Most Common Data Cleaning Operations -- Chapter 5 - Importing Data into Power BI -- Chapter 6 - Cleaning Data with Query Editor -- Chapter 7 - Transforming Data with the M Language -- Chapter 8 - Using Data Profiling for Exploratory Data Analysis (EDA) -- Chapter 9 - Advanced Data Cleaning Techniques -- Chapter 10 - Creating Custom Functions in Power Query -- Chapter 11 - M Query Optimization -- Chapter 12 - Data Modeling and Managing Relationships -- Chapter 13 - Preparing Data for Paginated Reporting -- Chapter 14 - Automating Data Cleaning Tasks with Power Automate -- Chapter 15 - Making Life Easier with OpenAI -- Index -- About Packt -- Other Books You May Enjoy |
ctrlnum | (ZDB-30-PQE)EBC31195583 (ZDB-30-PAD)EBC31195583 (ZDB-89-EBL)EBL31195583 (OCoLC)1424950496 (DE-599)BVBBV049873813 |
dewey-full | 005.369 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.369 |
dewey-search | 005.369 |
dewey-sort | 15.369 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049873813</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241209</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781805126058</subfield><subfield code="9">978-1-80512-605-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31195583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31195583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31195583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1424950496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049873813</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.369</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frazer, Gus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data cleaning with Power BI</subfield><subfield code="b">the definitive guide to transforming dirty data into actionable insights</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (340 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining-Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information visualization-Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual analytics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Frazer, Gus</subfield><subfield code="t">Data Cleaning with Power BI</subfield><subfield code="d">Birmingham : Packt Publishing, Limited,c2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007091.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035213271</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31195583</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007091.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">TUM_Paketkauf_2025</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007091.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049873813 |
illustrated | Not Illustrated |
indexdate | 2024-12-09T13:09:19Z |
institution | BVB |
isbn | 9781805126058 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035213271 |
oclc_num | 1424950496 |
open_access_boolean | |
owner | DE-2070s DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-2070s DE-706 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (340 Seiten) |
psigel | ZDB-30-PQE ZDB-221-PDA ZDB-30-PQE HWR_PDA_PQE ZDB-221-PDA TUM_Paketkauf_2025 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Frazer, Gus Verfasser aut Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights 1st edition Birmingham Packt Publishing, Limited 2024 © 2024 1 Online-Ressource (340 Seiten) txt rdacontent c rdamedia cr rdacarrier Data mining-Computer programs Information visualization-Computer programs Visual analytics Erscheint auch als Druck-Ausgabe Frazer, Gus Data Cleaning with Power BI Birmingham : Packt Publishing, Limited,c2024 https://portal.igpublish.com/iglibrary/search/PACKT0007091.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Frazer, Gus Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights Cover -- Title Page -- Copyright and Credits -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1 - Introduction and Fundamentals -- Chapter 1: Introduction to Power BI Data Cleaning -- Technical requirements -- Cleaning your data in Power BI -- Understanding Power Query -- Understanding DAX -- Where do we begin with data? -- Summary -- Questions -- Chapter 2: Understanding Data Quality and Why Data Cleaning is Important -- What is data quality? -- Where do data quality issues come from? -- The role of data cleaning in improving data quality -- Data integrity and accuracy -- Decision-making and business outcomes -- Data ownership and accountability -- A holistic view of the data ecosystem -- Early detection of issues -- Continuous improvement and learning -- Empowerment and collaboration -- Best practices for data quality overall -- Establishing data quality standards -- Summary -- Questions -- Chapter 3: Data Cleaning Fundamentals and Principles -- Defining data cleaning -- Who's responsible for cleaning data? -- Building a process for cleaning data -- Data assessment -- Data profiling -- Data validation -- Data cleaning strategies -- Data transformations -- Data quality assurance -- Documentation -- Understanding quality over quantity in data cleaning -- Summary -- Questions -- Chapter 4: The Most Common Data Cleaning Operations -- Technical requirements -- Removing duplicates -- Removing missing data -- Splitting columns -- Merging columns -- Replacing values -- Creating calculated columns versus measures -- Calculated columns -- Measures -- Calculation group -- Considerations -- Summary -- Questions -- Part 2 - Data Import and Query Editor -- Chapter 5: Importing Data into Power BI -- Technical requirements -- Understanding data completeness -- Understanding data accuracy -- Understanding data consistency Assessing data relevance -- Assessing data formatting -- Assessing data normalization, denormalization, and star schemas -- Dimension modeling and star schema -- Denormalized data in dimension tables -- Summary -- Questions -- Chapter 6: Cleaning Data with Query Editor -- Technical requirements -- Understanding the Query Editor interface -- Data cleaning techniques and functions -- Adding columns -- Data type conversions -- Date/time -- Rounding -- Pivot/unpivot columns -- Merge queries -- Using Query Editor versus DAX for transformation -- Power Query Editor -- Data Analysis Expressions (DAX) -- Workflow -- Summary -- Questions -- Further reading -- Chapter 7: Transforming Data with the M Language -- Technical requirements -- Understanding the M language -- Structure of M -- Common use cases of M -- Filtering and sorting data with M -- Transforming data with M -- Working with data sources in M -- Creating parameters and variables -- Summary -- Questions -- Chapter 8: Using Data Profiling for Exploratory Data Analysis (EDA) -- Understanding EDA -- Exploring data profiling features in Power BI -- Reviewing column quality, distribution, and profile -- Column distribution -- Column quality -- Column profile -- Turning data profiles into high-quality data -- Recommended actions on column distribution -- Value distribution -- Summary -- Questions -- Part 3 - Advanced Data Cleaning and Optimizations -- Chapter 9: Advanced Data Cleaning Techniques -- Technical requirements -- Using Power Query Editor from within Dataflow Gen1 - fuzzy matching and fill down -- Fuzzy matching -- Fill down -- Best practices for using fuzzy matching and fill down -- Using R and Python scripts -- Benefits of using R or Python scripts -- Getting started with using R or Python scripts in Power BI -- Using ML to clean data -- Data cleaning with anomaly detection Data preparation with AutoML -- Data enhancement with AI Insights -- Summary -- Questions -- Chapter 10: Creating Custom Functions in Power Query -- Planning for your custom function -- Defining the problem -- Identifying parameters -- Setting clear objectives -- Using parameters -- Types of parameters -- Defining parameters -- Best practices for using parameters -- Creating custom functions -- Defining the function structure -- Writing M code -- Testing and debugging -- Documentation -- Summary -- Questions -- Chapter 11: M Query Optimization -- Technical requirements -- Creating custom functions -- Filtering and reducing data -- Using native M functions -- Optimizing memory usage -- Parallel query execution -- Using Table.Buffer and Table.Split -- Summary -- Questions -- Further reading -- Chapter 12: Data Modeling and Managing Relationships -- Understanding the basics of data modeling -- Importing versus DirectQuery -- Dimensional modeling -- Snowflake schema -- Intermediate tables -- Calendars and date tables -- Role-playing dimensions -- Aggregating tables -- Incremental refreshes -- Using bidirectional cross-filtering -- What is bidirectional cross-filtering? -- Best practices for bidirectional cross-filtering -- Understanding what's the right cardinality -- Understanding cardinality -- Why cardinality matters -- Choosing the right cardinality -- Handling large and complex datasets -- Understanding big data -- Challenges of working with big data in Power BI -- Best practices for handling big data -- Avoiding circular references -- Understanding circular references -- Best practices for avoiding circular references -- Summary -- Questions -- Further reading -- Part 4 - Paginated Reports, Automations, and OpenAI -- Chapter 13: Preparing Data for Paginated Reporting -- Technical requirements -- Understanding the importance of paginated reports Connecting to data sources within Power BI Report Builder -- Data preparation -- Query -- Fields -- Options -- Filters -- Parameters -- Creating a dataset example -- Using filters and parameters -- Using row groups/column groups -- Organizing and structuring data -- Enhancing readability and presentation -- Summary -- Questions -- Chapter 14: Automating Data Cleaning Tasks with Power Automate -- Technical requirements -- Handling triggers for automation -- Automating notifications -- Automating refreshing of data -- Creating snapshots (temporary tables) of cleaned data -- Best practices with Power Automate -- Summary -- Questions -- Further reading -- Chapter 15: Making Life Easier with OpenAI -- Optimizing efficiency with OpenAI, ChatGPT, and DAX -- Using OpenAI for M queries -- Using Microsoft Copilot -- Tackling challenges with AI -- Summary -- Questions -- Further reading -- Putting it together -- Assessments -- Chapter 1 - Introduction to Power BI Data Cleaning -- Chapter 2 - Understanding Data Quality and Why Data Cleaning is Important -- Chapter 3 - Data Cleaning Fundamentals and Principles -- Chapter 4 - The Most Common Data Cleaning Operations -- Chapter 5 - Importing Data into Power BI -- Chapter 6 - Cleaning Data with Query Editor -- Chapter 7 - Transforming Data with the M Language -- Chapter 8 - Using Data Profiling for Exploratory Data Analysis (EDA) -- Chapter 9 - Advanced Data Cleaning Techniques -- Chapter 10 - Creating Custom Functions in Power Query -- Chapter 11 - M Query Optimization -- Chapter 12 - Data Modeling and Managing Relationships -- Chapter 13 - Preparing Data for Paginated Reporting -- Chapter 14 - Automating Data Cleaning Tasks with Power Automate -- Chapter 15 - Making Life Easier with OpenAI -- Index -- About Packt -- Other Books You May Enjoy Data mining-Computer programs Information visualization-Computer programs Visual analytics |
title | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_auth | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_exact_search | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_full | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_fullStr | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_full_unstemmed | Data cleaning with Power BI the definitive guide to transforming dirty data into actionable insights |
title_short | Data cleaning with Power BI |
title_sort | data cleaning with power bi the definitive guide to transforming dirty data into actionable insights |
title_sub | the definitive guide to transforming dirty data into actionable insights |
topic | Data mining-Computer programs Information visualization-Computer programs Visual analytics |
topic_facet | Data mining-Computer programs Information visualization-Computer programs Visual analytics |
url | https://portal.igpublish.com/iglibrary/search/PACKT0007091.html |
work_keys_str_mv | AT frazergus datacleaningwithpowerbithedefinitiveguidetotransformingdirtydataintoactionableinsights |