Reinforcement Learning for Finance: Solve Problems in Finance with CNN and RNN Using the TensorFlow Library
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress L. P.
2022
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (435 Seiten) |
ISBN: | 9781484288351 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049872851 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781484288351 |9 978-1-4842-8835-1 | ||
035 | |a (ZDB-30-PQE)EBC7164636 | ||
035 | |a (ZDB-30-PAD)EBC7164636 | ||
035 | |a (ZDB-89-EBL)EBL7164636 | ||
035 | |a (OCoLC)1356574193 | ||
035 | |a (DE-599)BVBBV049872851 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 332.0285631 | |
100 | 1 | |a Ahlawat, Samit |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reinforcement Learning for Finance |b Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
250 | |a 1st ed | ||
264 | 1 | |a Berkeley, CA |b Apress L. P. |c 2022 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (435 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks -- 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem -- 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning -- Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning | |
505 | 8 | |a 5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN -- 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index | |
650 | 4 | |a Reinforcement learning | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ahlawat, Samit |t Reinforcement Learning for Finance |d Berkeley, CA : Apress L. P.,c2022 |z 9781484288344 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035212309 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7164636 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1810600618113368064 |
---|---|
adam_text | |
any_adam_object | |
author | Ahlawat, Samit |
author_facet | Ahlawat, Samit |
author_role | aut |
author_sort | Ahlawat, Samit |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV049872851 |
collection | ZDB-30-PQE |
contents | Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks -- 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem -- 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning -- Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning 5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN -- 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC7164636 (ZDB-30-PAD)EBC7164636 (ZDB-89-EBL)EBL7164636 (OCoLC)1356574193 (DE-599)BVBBV049872851 |
dewey-full | 332.0285631 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.0285631 |
dewey-search | 332.0285631 |
dewey-sort | 3332.0285631 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049872851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484288351</subfield><subfield code="9">978-1-4842-8835-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7164636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7164636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7164636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1356574193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049872851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.0285631</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahlawat, Samit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reinforcement Learning for Finance</subfield><subfield code="b">Solve Problems in Finance with CNN and RNN Using the TensorFlow Library</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress L. P.</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (435 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks -- 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem -- 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning -- Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN -- 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ahlawat, Samit</subfield><subfield code="t">Reinforcement Learning for Finance</subfield><subfield code="d">Berkeley, CA : Apress L. P.,c2022</subfield><subfield code="z">9781484288344</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035212309</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7164636</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049872851 |
illustrated | Not Illustrated |
indexdate | 2024-09-19T05:21:46Z |
institution | BVB |
isbn | 9781484288351 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035212309 |
oclc_num | 1356574193 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (435 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Apress L. P. |
record_format | marc |
spelling | Ahlawat, Samit Verfasser aut Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library 1st ed Berkeley, CA Apress L. P. 2022 ©2023 1 Online-Ressource (435 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks -- 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem -- 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning -- Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning 5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN -- 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index Reinforcement learning Erscheint auch als Druck-Ausgabe Ahlawat, Samit Reinforcement Learning for Finance Berkeley, CA : Apress L. P.,c2022 9781484288344 |
spellingShingle | Ahlawat, Samit Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks -- 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem -- 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning -- Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning 5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN -- 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index Reinforcement learning |
title | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_auth | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_exact_search | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_full | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_fullStr | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_full_unstemmed | Reinforcement Learning for Finance Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
title_short | Reinforcement Learning for Finance |
title_sort | reinforcement learning for finance solve problems in finance with cnn and rnn using the tensorflow library |
title_sub | Solve Problems in Finance with CNN and RNN Using the TensorFlow Library |
topic | Reinforcement learning |
topic_facet | Reinforcement learning |
work_keys_str_mv | AT ahlawatsamit reinforcementlearningforfinancesolveproblemsinfinancewithcnnandrnnusingthetensorflowlibrary |