Artificial Intelligence for Industries of the Future: Beyond Facebook, Amazon, Microsoft and Google
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Ausgabe: | 1st ed |
Schriftenreihe: | Future of Business and Finance Series
|
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (165 Seiten) |
ISBN: | 9783031190391 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049872830 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240919s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783031190391 |9 978-3-031-19039-1 | ||
035 | |a (ZDB-30-PQE)EBC7147148 | ||
035 | |a (ZDB-30-PAD)EBC7147148 | ||
035 | |a (ZDB-89-EBL)EBL7147148 | ||
035 | |a (OCoLC)1354206006 | ||
035 | |a (DE-599)BVBBV049872830 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 006.3 | |
100 | 1 | |a Kejriwal, Mayank |e Verfasser |4 aut | |
245 | 1 | 0 | |a Artificial Intelligence for Industries of the Future |b Beyond Facebook, Amazon, Microsoft and Google |
250 | |a 1st ed | ||
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (165 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Future of Business and Finance Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ''Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications | |
505 | 8 | |a 4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index | |
650 | 4 | |a Artificial intelligence | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kejriwal, Mayank |t Artificial Intelligence for Industries of the Future |d Cham : Springer International Publishing AG,c2022 |z 9783031190384 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035212288 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7147148 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1810600618085056512 |
---|---|
adam_text | |
any_adam_object | |
author | Kejriwal, Mayank |
author_facet | Kejriwal, Mayank |
author_role | aut |
author_sort | Kejriwal, Mayank |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV049872830 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ''Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications 4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC7147148 (ZDB-30-PAD)EBC7147148 (ZDB-89-EBL)EBL7147148 (OCoLC)1354206006 (DE-599)BVBBV049872830 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049872830</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240919s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031190391</subfield><subfield code="9">978-3-031-19039-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7147148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7147148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7147148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1354206006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049872830</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kejriwal, Mayank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial Intelligence for Industries of the Future</subfield><subfield code="b">Beyond Facebook, Amazon, Microsoft and Google</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (165 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Future of Business and Finance Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ''Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kejriwal, Mayank</subfield><subfield code="t">Artificial Intelligence for Industries of the Future</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783031190384</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035212288</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7147148</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049872830 |
illustrated | Not Illustrated |
indexdate | 2024-09-19T05:21:46Z |
institution | BVB |
isbn | 9783031190391 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035212288 |
oclc_num | 1354206006 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (165 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Future of Business and Finance Series |
spelling | Kejriwal, Mayank Verfasser aut Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google 1st ed Cham Springer International Publishing AG 2022 ©2023 1 Online-Ressource (165 Seiten) txt rdacontent c rdamedia cr rdacarrier Future of Business and Finance Series Description based on publisher supplied metadata and other sources Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ''Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications 4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index Artificial intelligence Erscheint auch als Druck-Ausgabe Kejriwal, Mayank Artificial Intelligence for Industries of the Future Cham : Springer International Publishing AG,c2022 9783031190384 |
spellingShingle | Kejriwal, Mayank Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ''Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications 4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index Artificial intelligence |
title | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_auth | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_exact_search | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_full | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_fullStr | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_full_unstemmed | Artificial Intelligence for Industries of the Future Beyond Facebook, Amazon, Microsoft and Google |
title_short | Artificial Intelligence for Industries of the Future |
title_sort | artificial intelligence for industries of the future beyond facebook amazon microsoft and google |
title_sub | Beyond Facebook, Amazon, Microsoft and Google |
topic | Artificial intelligence |
topic_facet | Artificial intelligence |
work_keys_str_mv | AT kejriwalmayank artificialintelligenceforindustriesofthefuturebeyondfacebookamazonmicrosoftandgoogle |